quakeforge/libs/video/renderer/vulkan/render.c
Bill Currie 2fa44c03a6 [vulkan] Allow process steps to have render or compute
If a step has process tasks, any render or compute
pipelines/renderpasses are **not** run automatically: the idea is the
process tasks need to run the relevant pipelines in a custom manner but
needs the objects to be created.
2023-07-24 19:11:18 +09:00

709 lines
20 KiB
C

/*
render.c
Vulkan render manager
Copyright (C) 2023 Bill Currie <bill@taniwha.org>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_MATH_H
# include <math.h>
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include "QF/cmem.h"
#include "QF/hash.h"
#include "QF/mathlib.h"
#include "QF/va.h"
#include "QF/Vulkan/command.h"
#include "QF/Vulkan/debug.h"
#include "QF/Vulkan/device.h"
#include "QF/Vulkan/dsmanager.h"
#include "QF/Vulkan/image.h"
#include "QF/Vulkan/pipeline.h"
#include "QF/Vulkan/render.h"
#include "QF/Vulkan/resource.h"
#include "QF/Vulkan/swapchain.h"
#include "vid_vulkan.h"
#include "vkparse.h"
VkCommandBuffer
QFV_GetCmdBuffer (vulkan_ctx_t *ctx, bool secondary)
{
auto rctx = ctx->render_context;
auto rframe = &rctx->frames.a[ctx->curFrame];
return QFV_CmdPoolManager_CmdBuffer (&rframe->cmdpool, secondary);
}
void
QFV_AppendCmdBuffer (vulkan_ctx_t *ctx, VkCommandBuffer cmd)
{
__auto_type rctx = ctx->render_context;
__auto_type job = rctx->job;
DARRAY_APPEND (&job->commands, cmd);
}
static void
update_time (qfv_time_t *time, int64_t start, int64_t end)
{
int64_t delta = end - start;
time->cur_time = delta;
time->min_time = min (time->min_time, delta);
time->max_time = max (time->max_time, delta);
}
static void
run_tasks (uint32_t task_count, qfv_taskinfo_t *tasks, qfv_taskctx_t *ctx)
{
for (uint32_t i = 0; i < task_count; i++) {
tasks[i].func->func (tasks[i].params, 0, (exprctx_t *) ctx);
}
}
static void
run_pipeline (qfv_pipeline_t *pipeline, qfv_taskctx_t *taskctx)
{
if (pipeline->disabled) {
return;
}
qfv_device_t *device = taskctx->ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
auto cmd = taskctx->cmd;
dfunc->vkCmdBindPipeline (cmd, pipeline->bindPoint, pipeline->pipeline);
dfunc->vkCmdSetViewport (cmd, 0, 1, &pipeline->viewport);
dfunc->vkCmdSetScissor (cmd, 0, 1, &pipeline->scissor);
taskctx->pipeline = pipeline;
run_tasks (pipeline->task_count, pipeline->tasks, taskctx);
}
// https://themaister.net/blog/2019/08/14/yet-another-blog-explaining-vulkan-synchronization/
static void
run_subpass (qfv_subpass_t *sp, qfv_taskctx_t *taskctx)
{
qfv_device_t *device = taskctx->ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
dfunc->vkBeginCommandBuffer (taskctx->cmd, &sp->beginInfo);
for (uint32_t i = 0; i < sp->pipeline_count; i++) {
__auto_type pipeline = &sp->pipelines[i];
run_pipeline (pipeline, taskctx);
}
dfunc->vkEndCommandBuffer (taskctx->cmd);
}
static void
run_renderpass (qfv_renderpass_t *rp, vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
__auto_type rctx = ctx->render_context;
__auto_type job = rctx->job;
VkCommandBuffer cmd = QFV_GetCmdBuffer (ctx, false);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_COMMAND_BUFFER, cmd,
va (ctx->va_ctx, "cmd:render:%s", rp->label.name));
VkCommandBufferBeginInfo beginInfo = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
};
dfunc->vkBeginCommandBuffer (cmd, &beginInfo);
QFV_duCmdBeginLabel (device, cmd, rp->label.name,
{VEC4_EXP (rp->label.color)});
dfunc->vkCmdBeginRenderPass (cmd, &rp->beginInfo, rp->subpassContents);
for (uint32_t i = 0; i < rp->subpass_count; i++) {
__auto_type sp = &rp->subpasses[i];
QFV_duCmdBeginLabel (device, cmd, sp->label.name,
{VEC4_EXP (sp->label.color)});
qfv_taskctx_t taskctx = {
.ctx = ctx,
.renderpass = rp,
.cmd = QFV_GetCmdBuffer (ctx, true),
};
run_subpass (sp, &taskctx);
dfunc->vkCmdExecuteCommands (cmd, 1, &taskctx.cmd);
QFV_duCmdEndLabel (device, cmd);
//FIXME comment is a bit off as exactly one buffer is always submitted
//
//Regardless of whether any commands were submitted for this
//subpass, must step through each and every subpass, otherwise
//the attachments won't be transitioned correctly.
//However, only if not the last (or only) subpass.
if (i < rp->subpass_count - 1) {
dfunc->vkCmdNextSubpass (cmd, rp->subpassContents);
}
}
dfunc->vkCmdEndRenderPass (cmd);
QFV_CmdEndLabel (device, cmd);
dfunc->vkEndCommandBuffer (cmd);
DARRAY_APPEND (&job->commands, cmd);
}
static void
run_compute_pipeline (qfv_pipeline_t *pipeline, VkCommandBuffer cmd,
vulkan_ctx_t *ctx)
{
if (pipeline->disabled) {
return;
}
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
dfunc->vkCmdBindPipeline (cmd, pipeline->bindPoint, pipeline->pipeline);
qfv_taskctx_t taskctx = {
.ctx = ctx,
.pipeline = pipeline,
.cmd = cmd,
};
run_tasks (pipeline->task_count, pipeline->tasks, &taskctx);
vec4u_t d = pipeline->dispatch;
if (d[0] && d[1] && d[2]) {
dfunc->vkCmdDispatch (cmd, d[0], d[1], d[2]);
}
}
static void
run_compute (qfv_compute_t *comp, vulkan_ctx_t *ctx, qfv_step_t *step)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
__auto_type rctx = ctx->render_context;
__auto_type job = rctx->job;
VkCommandBuffer cmd = QFV_GetCmdBuffer (ctx, false);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_COMMAND_BUFFER, cmd,
va (ctx->va_ctx, "cmd:compute:%s", step->label.name));
QFV_duCmdBeginLabel (device, cmd, step->label.name,
{VEC4_EXP (step->label.color)});
VkCommandBufferBeginInfo beginInfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
};
dfunc->vkBeginCommandBuffer (cmd, &beginInfo);
for (uint32_t i = 0; i < comp->pipeline_count; i++) {
__auto_type pipeline = &comp->pipelines[i];
run_compute_pipeline (pipeline, cmd, ctx);
}
QFV_duCmdEndLabel (device, cmd);
dfunc->vkEndCommandBuffer (cmd);
DARRAY_APPEND (&job->commands, cmd);
}
static void
run_process (qfv_process_t *proc, vulkan_ctx_t *ctx)
{
qfv_taskctx_t taskctx = {
.ctx = ctx,
};
run_tasks (proc->task_count, proc->tasks, &taskctx);
}
void
QFV_RunRenderJob (vulkan_ctx_t *ctx)
{
auto rctx = ctx->render_context;
auto job = rctx->job;
int64_t start = Sys_LongTime ();
for (uint32_t i = 0; i < job->num_steps; i++) {
int64_t step_start = Sys_LongTime ();
__auto_type step = &job->steps[i];
if (!step->process) {
// run render and compute steps automatically only if there's no
// process for the step (the idea is the proces uses the compute
// and renderpass objects for its own purposes).
if (step->render) {
run_renderpass (step->render->active, ctx);
}
if (step->compute) {
run_compute (step->compute, ctx, step);
}
}
if (step->process) {
run_process (step->process, ctx);
}
update_time (&step->time, step_start, Sys_LongTime ());
}
auto device = ctx->device;
auto dfunc = device->funcs;
auto queue = &device->queue;
auto frame = &rctx->frames.a[ctx->curFrame];
VkPipelineStageFlags waitStage
= VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
VkSubmitInfo submitInfo = {
VK_STRUCTURE_TYPE_SUBMIT_INFO, 0,
1, &frame->imageAvailableSemaphore, &waitStage,
job->commands.size, job->commands.a,
1, &frame->renderDoneSemaphore,
};
dfunc->vkResetFences (device->dev, 1, &frame->fence);
dfunc->vkQueueSubmit (queue->queue, 1, &submitInfo, frame->fence);
VkPresentInfoKHR presentInfo = {
VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, 0,
1, &frame->renderDoneSemaphore,
1, &ctx->swapchain->swapchain, &ctx->swapImageIndex,
0
};
dfunc->vkQueuePresentKHR (queue->queue, &presentInfo);
if (++ctx->curFrame >= rctx->frames.size) {
ctx->curFrame = 0;
}
update_time (&job->time, start, Sys_LongTime ());
}
static qfv_imageviewinfo_t * __attribute__((pure))
find_imageview (qfv_reference_t *ref, qfv_renderpass_t *rp,
qfv_renderctx_t *rctx)
{
auto jinfo = rctx->jobinfo;
const char *name = ref->name;
if (strncmp (name, "$imageviews.", 7) == 0) {
name += 7;
}
for (uint32_t i = 0; i < jinfo->num_imageviews; i++) {
auto viewinfo = &jinfo->imageviews[i];
if (strcmp (name, viewinfo->name) == 0) {
return viewinfo;
}
}
Sys_Error ("%d:invalid imageview: %s", ref->line, ref->name);
}
void
QFV_DestroyFramebuffer (vulkan_ctx_t *ctx, qfv_renderpass_t *rp)
{
if (rp->beginInfo.framebuffer) {
auto device = ctx->device;
auto dfunc = device->funcs;
auto bi = &rp->beginInfo;
dfunc->vkDestroyFramebuffer (device->dev, bi->framebuffer, 0);
bi->framebuffer = 0;
}
if (rp->resources && rp->resources->memory) {
QFV_DestroyResource (ctx->device, rp->resources);
}
}
void
QFV_CreateFramebuffer (vulkan_ctx_t *ctx, qfv_renderpass_t *rp,
VkExtent2D extent)
{
auto rctx = ctx->render_context;
if (rp->resources && !rp->resources->memory) {
for (uint32_t i = 0; i < rp->resources->num_objects; i++) {
auto obj = &rp->resources->objects[i];
if (obj->type == qfv_res_image) {
obj->image.extent.width = extent.width;
obj->image.extent.height = extent.height;
}
}
QFV_CreateResource (ctx->device, rp->resources);
}
auto fb = rp->framebufferinfo;
auto attachments = rp->framebuffer.views;
VkFramebufferCreateInfo cInfo = {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.attachmentCount = fb->num_attachments,
.pAttachments = attachments,
.renderPass = rp->beginInfo.renderPass,
.width = extent.width,
.height = extent.height,
.layers = fb->layers,
};
for (uint32_t i = 0; i < fb->num_attachments; i++) {
if (fb->attachments[i].external) {
attachments[i] = 0;
if (!strcmp (fb->attachments[i].external, "$swapchain")) {
auto sc = ctx->swapchain;
attachments[i] = sc->imageViews->a[ctx->swapImageIndex];
cInfo.width = sc->extent.width;
cInfo.height = sc->extent.height;
}
} else {
auto viewinfo = find_imageview (&fb->attachments[i].view, rp, rctx);
attachments[i] = viewinfo->object->image_view.view;
if (rp->outputref.name) {
viewinfo = find_imageview (&rp->outputref, rp, rctx);
rp->output = viewinfo->object->image_view.view;
}
}
}
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
VkFramebuffer framebuffer;
dfunc->vkCreateFramebuffer (device->dev, &cInfo, 0, &framebuffer);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_FRAMEBUFFER, framebuffer,
va (ctx->va_ctx, "framebuffer:%s", rp->label.name));
rp->beginInfo.framebuffer = framebuffer;
for (uint32_t i = 0; i < rp->subpass_count; i++) {
__auto_type sp = &rp->subpasses[i];
sp->inherit.framebuffer = framebuffer;
}
}
static void
wait_on_fence (const exprval_t **params, exprval_t *result, exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto device = ctx->device;
auto dfunc = device->funcs;
auto dev = device->dev;
auto rctx = ctx->render_context;
auto frame = &rctx->frames.a[ctx->curFrame];
dfunc->vkWaitForFences (dev, 1, &frame->fence, VK_TRUE, 2000000000);
QFV_CmdPoolManager_Reset (&frame->cmdpool);
auto job = ctx->render_context->job;
DARRAY_RESIZE (&job->commands, 0);
}
static void
renderpass_update_viewport_sissor (qfv_renderpass_t *rp,
const qfv_output_t *output)
{
rp->beginInfo.renderArea.extent = output->extent;
for (uint32_t i = 0; i < rp->subpass_count; i++) {
auto sp = &rp->subpasses[i];
for (uint32_t j = 0; j < sp->pipeline_count; j++) {
auto pl = &sp->pipelines[j];
pl->viewport = (VkViewport) {
.width = output->extent.width,
.height = output->extent.height,
.minDepth = 0,
.maxDepth = 1,
};
pl->scissor.extent = output->extent;
}
}
}
static void
update_viewport_scissor (qfv_render_t *render, const qfv_output_t *output)
{
for (uint32_t i = 0; i < render->num_renderpasses; i++) {
renderpass_update_viewport_sissor (&render->renderpasses[i], output);
}
}
static void
update_framebuffer (const exprval_t **params, exprval_t *result,
exprctx_t *ectx)
{
auto taskctx = (qfv_taskctx_t *) ectx;
auto ctx = taskctx->ctx;
auto job = ctx->render_context->job;
auto step = QFV_GetStep (params[0], job);
auto render = step->render;
auto rp = render->active;
qfv_output_t output = {};
Vulkan_ConfigOutput (ctx, &output);
if ((output.extent.width != render->output.extent.width
|| output.extent.height != render->output.extent.height)
&& (Sys_LongTime () - ctx->render_context->size_time) > 2*1000*1000) {
QFV_DestroyFramebuffer (ctx, rp);
update_viewport_scissor (render, &output);
render->output.extent = output.extent;
}
if (!rp->beginInfo.framebuffer) {
QFV_CreateFramebuffer (ctx, rp, render->output.extent);
}
}
static exprfunc_t wait_on_fence_func[] = {
{ .func = wait_on_fence },
{}
};
static exprtype_t *update_framebuffer_params[] = {
&cexpr_string,
};
static exprfunc_t update_framebuffer_func[] = {
{ .func = update_framebuffer, .num_params = 1, update_framebuffer_params },
{}
};
static exprsym_t render_task_syms[] = {
{ "wait_on_fence", &cexpr_function, wait_on_fence_func },
{ "update_framebuffer", &cexpr_function, update_framebuffer_func },
{}
};
void
QFV_Render_Init (vulkan_ctx_t *ctx)
{
qfv_renderctx_t *rctx = calloc (1, sizeof (*rctx));
ctx->render_context = rctx;
rctx->size_time = -1000*1000*1000;
exprctx_t ectx = { .hashctx = &rctx->hashctx };
exprsym_t syms[] = { {} };
rctx->task_functions.symbols = syms;
cexpr_init_symtab (&rctx->task_functions, &ectx);
rctx->task_functions.symbols = 0;
rctx->external_attachments =
(qfv_attachmentinfoset_t) DARRAY_STATIC_INIT (4);
QFV_Render_AddTasks (ctx, render_task_syms);
auto device = ctx->device;
size_t frames = vulkan_frame_count;
DARRAY_INIT (&rctx->frames, frames);
DARRAY_RESIZE (&rctx->frames, frames);
for (size_t i = 0; i < rctx->frames.size; i++) {
auto frame = &rctx->frames.a[i];
frame->fence = QFV_CreateFence (device, 1);
frame->imageAvailableSemaphore = QFV_CreateSemaphore (device);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_SEMAPHORE,
frame->imageAvailableSemaphore,
va (ctx->va_ctx, "sc image:%zd", i));
frame->renderDoneSemaphore = QFV_CreateSemaphore (device);
QFV_CmdPoolManager_Init (&frame->cmdpool, device,
va (ctx->va_ctx, "render pool:%zd", i));
}
}
void
QFV_Render_Shutdown (vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
__auto_type rctx = ctx->render_context;
if (rctx->job) {
__auto_type job = rctx->job;
for (uint32_t i = 0; i < job->num_renderpasses; i++) {
dfunc->vkDestroyRenderPass (device->dev, job->renderpasses[i], 0);
}
for (uint32_t i = 0; i < job->num_pipelines; i++) {
dfunc->vkDestroyPipeline (device->dev, job->pipelines[i], 0);
}
for (uint32_t i = 0; i < job->num_layouts; i++) {
dfunc->vkDestroyPipelineLayout (device->dev, job->layouts[i], 0);
}
for (uint32_t i = 0; i < job->num_steps; i++) {
if (job->steps[i].render) {
auto render = job->steps[i].render;
for (uint32_t j = 0; j < render->num_renderpasses; j++) {
auto rp = &render->renderpasses[j];
if (rp->resources && rp->resources->memory) {
QFV_DestroyResource (ctx->device, rp->resources);
}
free (rp->resources);
auto bi = &rp->beginInfo;
if (bi->framebuffer) {
dfunc->vkDestroyFramebuffer (device->dev,
bi->framebuffer, 0);
}
}
}
}
DARRAY_CLEAR (&job->commands);
for (uint32_t i = 0; i < job->num_dsmanagers; i++) {
QFV_DSManager_Destroy (job->dsmanager[i]);
}
free (rctx->job);
}
for (uint32_t i = 0; i < rctx->frames.size; i++) {
auto dev = device->dev;
auto df = dfunc;
auto frame = &rctx->frames.a[i];
df->vkDestroyFence (dev, frame->fence, 0);
df->vkDestroySemaphore (dev, frame->imageAvailableSemaphore, 0);
df->vkDestroySemaphore (dev, frame->renderDoneSemaphore, 0);
QFV_CmdPoolManager_Shutdown (&frame->cmdpool);
}
DARRAY_CLEAR (&rctx->frames);
if (rctx->jobinfo) {
__auto_type jinfo = rctx->jobinfo;
for (uint32_t i = 0; i < jinfo->num_dslayouts; i++) {
__auto_type setLayout = jinfo->dslayouts[i].setLayout;
dfunc->vkDestroyDescriptorSetLayout (device->dev, setLayout, 0);
}
delete_memsuper (jinfo->memsuper);
}
if (rctx->task_functions.tab) {
Hash_DelTable (rctx->task_functions.tab);
}
DARRAY_CLEAR (&rctx->external_attachments);
if (rctx->samplerinfo) {
auto si = rctx->samplerinfo;
for (uint32_t i = 0; i < si->num_samplers; i++) {
auto sci = &si->samplers[i];
if (sci->sampler) {
dfunc->vkDestroySampler (device->dev, sci->sampler, 0);
}
}
}
Hash_DelContext (rctx->hashctx);
QFV_Render_UI_Shutdown (ctx);
free (rctx);
}
void
QFV_Render_AddTasks (vulkan_ctx_t *ctx, exprsym_t *task_syms)
{
__auto_type rctx = ctx->render_context;
exprctx_t ectx = { .hashctx = &rctx->hashctx };
for (exprsym_t *sym = task_syms; sym->name; sym++) {
Hash_Add (rctx->task_functions.tab, sym);
for (exprfunc_t *f = sym->value; f->func; f++) {
for (int i = 0; i < f->num_params; i++) {
exprenum_t *e = f->param_types[i]->data;
if (e && !e->symtab->tab) {
cexpr_init_symtab (e->symtab, &ectx);
}
}
}
}
}
void
QFV_Render_AddAttachments (vulkan_ctx_t *ctx, uint32_t num_attachments,
qfv_attachmentinfo_t **attachments)
{
auto rctx = ctx->render_context;
size_t base = rctx->external_attachments.size;
DARRAY_RESIZE (&rctx->external_attachments, base + num_attachments);
for (size_t i = 0; i < num_attachments; i++) {
rctx->external_attachments.a[base + i] = attachments[i];
}
}
qfv_step_t *
QFV_FindStep (const char *name, qfv_job_t *job)
{
for (uint32_t i = 0; i < job->num_steps; i++) {
auto step = &job->steps[i];
if (!strcmp (step->label.name, name)) {
return step;
}
}
return 0;
}
qfv_step_t *
QFV_GetStep (const exprval_t *param, qfv_job_t *job)
{
// this is a little evil, but need to update the type after resolving
// the step name
auto stepref = (exprval_t *) param;
// cache the render step referenced, using the parameter type as a flag
// for whether the caching has been performed.
if (stepref->type == &cexpr_string) {
if (cexpr_string.size != cexpr_voidptr.size) {
Sys_Error ("string and voidptr incompatible sizes");
}
auto name = *(const char **)stepref->value;
stepref->type = &cexpr_voidptr;
*(qfv_step_t **)stepref->value = QFV_FindStep (name, job);
}
return *(qfv_step_t **)stepref->value;
}
qfv_dsmanager_t *
QFV_Render_DSManager (vulkan_ctx_t *ctx, const char *setName)
{
auto job = ctx->render_context->job;
for (uint32_t i = 0; i < job->num_dsmanagers; i++) {
auto ds = job->dsmanager[i];
if (!strcmp (ds->name, setName)) {
return ds;
}
}
return 0;
}
static void
create_sampler (vulkan_ctx_t *ctx, qfv_samplercreateinfo_t *sampler)
{
VkSamplerCreateInfo create = {
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.flags = sampler->flags,
.magFilter = sampler->magFilter,
.minFilter = sampler->minFilter,
.mipmapMode = sampler->mipmapMode,
.addressModeU = sampler->addressModeU,
.addressModeV = sampler->addressModeV,
.addressModeW = sampler->addressModeW,
.mipLodBias = sampler->mipLodBias,
.anisotropyEnable = sampler->anisotropyEnable,
.maxAnisotropy = sampler->maxAnisotropy,
.compareEnable = sampler->compareEnable,
.compareOp = sampler->compareOp,
.minLod = sampler->minLod,
.maxLod = sampler->maxLod,
.borderColor = sampler->borderColor,
.unnormalizedCoordinates = sampler->unnormalizedCoordinates,
};
auto device = ctx->device;
auto dfunc = device->funcs;
dfunc->vkCreateSampler (device->dev, &create, 0, &sampler->sampler);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_SAMPLER, sampler->sampler,
va (ctx->va_ctx, "sampler:%s", sampler->name));
}
VkSampler
QFV_Render_Sampler (vulkan_ctx_t *ctx, const char *name)
{
auto si = ctx->render_context->samplerinfo;
if (!si) {
return 0;
}
for (uint32_t i = 0; i < si->num_samplers; i++) {
auto sci = &si->samplers[i];
if (!strcmp (sci->name, name)) {
if (!sci->sampler) {
create_sampler (ctx, sci);
}
return sci->sampler;
}
}
printf ("sampler %s not found\n", name);
return 0;
}