quakeforge/tools/qfcc/source/statements.c
Bill Currie 23c9a317f8 [qfcc] Give alias expressions their own type
While this was a pain to get working, that pain only went to prove the
value of using proper "types" (even if only an enum) for different
expression types: just finding all the places to edit was a chore, and
easy to make mistakes (forgetting bits here and there).

Strangely enough, this exposed a pile of *type* aliasing bugs (next
commit).
2022-01-08 12:06:52 +09:00

2249 lines
54 KiB
C

/*
statements.c
Internal statements
Copyright (C) 2011 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2011/06/18
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include <inttypes.h>
#include "qfalloca.h"
#include "QF/alloc.h"
#include "QF/mathlib.h"
#include "QF/va.h"
#include "tools/qfcc/include/class.h"
#include "tools/qfcc/include/dags.h"
#include "tools/qfcc/include/diagnostic.h"
#include "tools/qfcc/include/dot.h"
#include "tools/qfcc/include/expr.h"
#include "tools/qfcc/include/function.h"
#include "tools/qfcc/include/method.h"
#include "tools/qfcc/include/options.h"
#include "tools/qfcc/include/qfcc.h"
#include "tools/qfcc/include/reloc.h"
#include "tools/qfcc/include/statements.h"
#include "tools/qfcc/include/strpool.h"
#include "tools/qfcc/include/symtab.h"
#include "tools/qfcc/include/type.h"
#include "tools/qfcc/include/value.h"
#include "tools/qfcc/source/qc-parse.h"
const char *op_type_names[] = {
"op_def",
"op_value",
"op_label",
"op_temp",
"op_alias",
"op_nil",
"op_pseudo",
};
const char *st_type_names[] = {
"st_none",
"st_expr",
"st_assign",
"st_ptrassign",
"st_move",
"st_ptrmove",
"st_memset",
"st_ptrmemset",
"st_state",
"st_func",
"st_flow",
};
const char *
optype_str (op_type_e type)
{
if (type > op_temp)
return "<invalid op_type>";
return op_type_names[type];
}
static const char *
tempop_string (operand_t *tmpop)
{
tempop_t *tempop = &tmpop->tempop;
if (tempop->alias) {
return va (0, "<tmp %s %p:%d:%p:%d:%d>",
pr_type_name[tempop->type->type],
tmpop, tempop->users,
tempop->alias,
tempop->offset,
tempop->alias->tempop.users);
}
return va (0, "<tmp %s %p:%d>", pr_type_name[tempop->type->type],
tmpop, tempop->users);
}
const char *
operand_string (operand_t *op)
{
if (!op)
return "";
switch (op->op_type) {
case op_def:
return op->def->name;
case op_value:
switch (op->value->lltype) {
case ev_string:
return va (0, "\"%s\"",
quote_string (op->value->v.string_val));
case ev_double:
return va (0, "%g", op->value->v.double_val);
case ev_float:
return va (0, "%g", op->value->v.float_val);
case ev_vector:
return va (0, "'%g %g %g'",
op->value->v.vector_val[0],
op->value->v.vector_val[1],
op->value->v.vector_val[2]);
case ev_quat:
return va (0, "'%g %g %g %g'",
op->value->v.quaternion_val[0],
op->value->v.quaternion_val[1],
op->value->v.quaternion_val[2],
op->value->v.quaternion_val[3]);
case ev_pointer:
if (op->value->v.pointer.def) {
return va (0, "ptr %s+%d",
op->value->v.pointer.def->name,
op->value->v.pointer.val);
} else if(op->value->v.pointer.tempop) {
operand_t *tempop = op->value->v.pointer.tempop;
return va (0, "ptr %s+%d", tempop_string (tempop),
op->value->v.pointer.val);
} else {
return va (0, "ptr %d", op->value->v.pointer.val);
}
case ev_field:
return va (0, "field %d", op->value->v.pointer.val);
case ev_entity:
return va (0, "ent %d", op->value->v.integer_val);
case ev_func:
return va (0, "func %d", op->value->v.integer_val);
case ev_integer:
return va (0, "int %d", op->value->v.integer_val);
case ev_uinteger:
return va (0, "uint %u", op->value->v.uinteger_val);
case ev_long:
return va (0, "long %"PRIi64, op->value->v.long_val);
case ev_ulong:
return va (0, "ulong %"PRIu64, op->value->v.ulong_val);
case ev_short:
return va (0, "short %d", op->value->v.short_val);
case ev_void:
return "(void)";
case ev_invalid:
return "(invalid)";
case ev_type_count:
return "(type_count)";
}
break;
case op_label:
return op->label->name;
case op_temp:
return tempop_string (op);
case op_alias:
{
const char *alias = operand_string (op->alias);
char *buf = alloca (strlen (alias) + 1);
strcpy (buf, alias);
return va (0, "alias(%s,%s)", pr_type_name[op->type->type],
buf);
}
case op_nil:
return "nil";
case op_pseudo:
return va (0, "pseudo: %s", op->pseudoop->name);
}
return ("??");
}
static void
_print_operand (operand_t *op)
{
switch (op->op_type) {
case op_def:
printf ("(%s) ", pr_type_name[op->type->type]);
printf ("%s", op->def->name);
break;
case op_value:
printf ("(%s) ", pr_type_name[op->type->type]);
switch (op->value->lltype) {
case ev_string:
printf ("\"%s\"", op->value->v.string_val);
break;
case ev_double:
printf ("%g", op->value->v.double_val);
break;
case ev_float:
printf ("%g", op->value->v.float_val);
break;
case ev_vector:
printf ("'%g", op->value->v.vector_val[0]);
printf (" %g", op->value->v.vector_val[1]);
printf (" %g'", op->value->v.vector_val[2]);
break;
case ev_quat:
printf ("'%g", op->value->v.quaternion_val[0]);
printf (" %g", op->value->v.quaternion_val[1]);
printf (" %g", op->value->v.quaternion_val[2]);
printf (" %g'", op->value->v.quaternion_val[3]);
break;
case ev_pointer:
printf ("(%s)[%d]",
pr_type_name[op->value->v.pointer.type->type],
op->value->v.pointer.val);
break;
case ev_field:
printf ("%d", op->value->v.pointer.val);
break;
case ev_entity:
case ev_func:
case ev_integer:
printf ("%d", op->value->v.integer_val);
break;
case ev_uinteger:
printf ("%u", op->value->v.uinteger_val);
break;
case ev_long:
printf ("%"PRIu64, op->value->v.long_val);
break;
case ev_ulong:
printf ("%"PRIu64, op->value->v.ulong_val);
break;
case ev_short:
printf ("%d", op->value->v.short_val);
break;
case ev_void:
case ev_invalid:
case ev_type_count:
internal_error (op->expr, "weird value type");
}
break;
case op_label:
printf ("block %p", op->label->dest);
break;
case op_temp:
printf ("tmp (%s) %p", pr_type_name[op->type->type], op);
if (op->tempop.def)
printf (" %s", op->tempop.def->name);
break;
case op_alias:
printf ("alias(%s,", pr_type_name[op->type->type]);
_print_operand (op->alias);
printf (")");
break;
case op_nil:
printf ("nil");
break;
case op_pseudo:
printf ("pseudo: %s", op->pseudoop->name);
break;
}
}
void
print_operand (operand_t *op)
{
_print_operand (op);
puts ("");
}
static void
print_operand_chain (const char *name, operand_t *op)
{
if (op) {
printf (" %s:", name);
while (op) {
printf (" ");
_print_operand (op);
op = op->next;
}
printf ("\n");
}
}
void
print_statement (statement_t *s)
{
printf ("(%s, ", s->opcode);
if (s->opa)
_print_operand (s->opa);
printf (", ");
if (s->opb)
_print_operand (s->opb);
printf (", ");
if (s->opc)
_print_operand (s->opc);
printf (")\n");
print_operand_chain ("use", s->use);
print_operand_chain ("def", s->def);
print_operand_chain ("kill", s->kill);
}
static pseudoop_t *pseudoops_freelist;
static sblock_t *sblocks_freelist;
static statement_t *statements_freelist;
static operand_t *operands_freelist;
sblock_t *
new_sblock (void)
{
sblock_t *sblock;
ALLOC (256, sblock_t, sblocks, sblock);
sblock->tail = &sblock->statements;
return sblock;
}
void
sblock_add_statement (sblock_t *sblock, statement_t *statement)
{
// this should normally be null, but might be inserting
statement->next = *sblock->tail;
*sblock->tail = statement;
sblock->tail = &statement->next;
}
statement_t *
new_statement (st_type_t type, const char *opcode, expr_t *expr)
{
statement_t *statement;
ALLOC (256, statement_t, statements, statement);
statement->type = type;
statement->opcode = save_string (opcode);
statement->expr = expr;
statement->number = -1; // indicates flow analysis not done yet
return statement;
}
static pseudoop_t *
new_pseudoop (const char *name)
{
pseudoop_t *pseudoop;
ALLOC (256, pseudoop_t, pseudoops, pseudoop);
pseudoop->name = save_string (name);
return pseudoop;
}
static operand_t *
new_operand (op_type_e op, expr_t *expr, void *return_addr)
{
operand_t *operand;
ALLOC (256, operand_t, operands, operand);
operand->op_type = op;
operand->expr = expr;
operand->return_addr = return_addr;
return operand;
}
void
free_operand (operand_t *op)
{
FREE (operands, op);
}
static void
free_statement (statement_t *s)
{
// if (s->opa)
// free_operand (s->opa);
// if (s->opb)
// free_operand (s->opb);
// if (s->opc)
// free_operand (s->opc);
FREE (statements, s);
}
static void
free_sblock (sblock_t *sblock)
{
while (sblock->statements) {
statement_t *s = sblock->statements;
sblock->statements = s->next;
free_statement (s);
}
FREE (sblocks, sblock);
}
static operand_t *
pseudo_operand (pseudoop_t *pseudoop, expr_t *expr)
{
operand_t *op;
op = new_operand (op_pseudo, expr, __builtin_return_address (0));
op->pseudoop = pseudoop;
op->size = 1;
return op;
}
operand_t *
nil_operand (type_t *type, expr_t *expr)
{
operand_t *op;
op = new_operand (op_nil, expr, __builtin_return_address (0));
op->type = type;
op->size = type_size (type);
return op;
}
operand_t *
def_operand (def_t *def, type_t *type, expr_t *expr)
{
operand_t *op;
if (!type)
type = def->type;
op = new_operand (op_def, expr, __builtin_return_address (0));
op->type = type;
op->size = type_size (type);
op->def = def;
return op;
}
operand_t *
return_operand (type_t *type, expr_t *expr)
{
symbol_t *return_symbol;
return_symbol = make_symbol (".return", &type_param, pr.symtab->space,
sc_extern);
return def_operand (return_symbol->s.def, type, expr);
}
operand_t *
value_operand (ex_value_t *value, expr_t *expr)
{
operand_t *op;
op = new_operand (op_value, expr, __builtin_return_address (0));
op->type = value->type;
op->value = value;
return op;
}
operand_t *
temp_operand (type_t *type, expr_t *expr)
{
operand_t *op = new_operand (op_temp, expr, __builtin_return_address (0));
op->tempop.type = type;
op->type = type;
op->size = type_size (type);
return op;
}
int
tempop_overlap (tempop_t *t1, tempop_t *t2)
{
int offs1 = t1->offset;
int offs2 = t2->offset;
int size1 = type_size (t1->type);
int size2 = type_size (t2->type);
if (t1->alias) {
offs1 += t1->alias->tempop.offset;
}
if (t2->alias) {
offs2 += t2->alias->tempop.offset;
}
if (offs1 <= offs2 && offs1 + size1 >= offs2 + size2)
return 2; // t1 fully overlaps t2
if (offs1 < offs2 + size2 && offs2 < offs1 + size1)
return 1; // t1 and t2 at least partially overlap
return 0;
}
int
tempop_visit_all (tempop_t *tempop, int overlap,
int (*visit) (tempop_t *, void *), void *data)
{
tempop_t *start_tempop = tempop;
operand_t *top;
int ret;
if ((ret = visit (tempop, data)))
return ret;
if (tempop->alias) {
top = tempop->alias;
if (top->op_type != op_temp) {
internal_error (top->expr, "temp alias of non-temp operand");
}
tempop = &top->tempop;
if ((ret = visit (tempop, data)))
return ret;
} else {
overlap = 0;
}
for (top = tempop->alias_ops; top; top = top->next) {
if (top->op_type != op_temp) {
internal_error (top->expr, "temp alias of non-temp operand");
}
tempop = &top->tempop;
if (tempop == start_tempop)
continue;
if (overlap && tempop_overlap (tempop, start_tempop) < overlap)
continue;
if ((ret = visit (tempop, data)))
return ret;
}
return 0;
}
operand_t *
alias_operand (type_t *type, operand_t *op, expr_t *expr)
{
operand_t *aop;
if (type_size (type) != type_size (op->type)) {
internal_error (op->expr,
"aliasing operand with type of different size: %d, %d",
type_size (type), type_size (op->type));
}
aop = new_operand (op_alias, expr, __builtin_return_address (0));
aop->alias = op;
aop->type = type;
aop->size = type_size (type);
return aop;
}
operand_t *
label_operand (expr_t *label)
{
operand_t *lop;
if (label->type != ex_label) {
internal_error (label, "not a label expression");
}
lop = new_operand (op_label, label, __builtin_return_address (0));
lop->label = &label->e.label;
return lop;
}
static operand_t *
short_operand (short short_val, expr_t *expr)
{
ex_value_t *val = new_short_val (short_val);
return value_operand (val, expr);
}
static const char *
convert_op (int op)
{
switch (op) {
case OR: return "||";
case AND: return "&&";
case EQ: return "==";
case NE: return "!=";
case LE: return "<=";
case GE: return ">=";
case LT: return "<";
case GT: return ">";
case '=': return "=";
case '+': return "+";
case '-': return "-";
case '*': return "*";
case '/': return "/";
case '%': return "%";
case MOD: return "%%";
case '&': return "&";
case '|': return "|";
case '^': return "^";
case '~': return "~";
case '!': return "!";
case SHL: return "<<";
case SHR: return ">>";
case '.': return ".";
case 'i': return "<IF>";
case 'n': return "<IFNOT>";
case IFBE: return "<IFBE>";
case IFB: return "<IFB>";
case IFAE: return "<IFAE>";
case IFA: return "<IFA>";
case 'm': return "<MOVE>";
case 'M': return "<MOVEP>";
default:
return 0;
}
}
int
statement_is_cond (statement_t *s)
{
if (!s)
return 0;
return !strncmp (s->opcode, "<IF", 3);
}
int
statement_is_goto (statement_t *s)
{
if (!s)
return 0;
return !strcmp (s->opcode, "<GOTO>");
}
int
statement_is_jumpb (statement_t *s)
{
if (!s)
return 0;
return !strcmp (s->opcode, "<JUMPB>");
}
int
statement_is_call (statement_t *s)
{
if (!s)
return 0;
if (!strncmp (s->opcode, "<CALL", 5))
return 1;
if (!strncmp (s->opcode, "<RCALL", 6))
return 2;
return 0;
}
int
statement_is_return (statement_t *s)
{
if (!s)
return 0;
return !strncmp (s->opcode, "<RETURN", 7);
}
sblock_t *
statement_get_target (statement_t *s)
{
if (statement_is_cond (s))
return s->opb->label->dest;
if (statement_is_goto (s))
return s->opa->label->dest;
return 0;
}
sblock_t **
statement_get_targetlist (statement_t *s)
{
sblock_t **target_list;
int count = 0, i;
def_t *table = 0;
element_t *e;
if (statement_is_cond (s)) {
count = 1;
} else if (statement_is_goto (s)) {
count = 1;
} else if (statement_is_jumpb (s)) {
table = s->opa->def;
count = table->type->t.array.size;
}
target_list = malloc ((count + 1) * sizeof (sblock_t *));
target_list[count] = 0;
if (statement_is_cond (s)) {
target_list[0] = statement_get_target (s);
} else if (statement_is_goto (s)) {
target_list[0] = statement_get_target (s);
} else if (statement_is_jumpb (s)) {
if (table->alias)
internal_error (s->opa->expr, "aliased jump table");
e = table->initializer->e.compound.head; //FIXME check!!!
for (i = 0; i < count; e = e->next, i++)
target_list[i] = e->expr->e.labelref.label->dest;
}
return target_list;
}
static void
invert_conditional (statement_t *s)
{
if (!strcmp (s->opcode, "<IF>"))
s->opcode = "<IFNOT>";
else if (!strcmp (s->opcode, "<IFNOT>"))
s->opcode = "<IF>";
else if (!strcmp (s->opcode, "<IFBE>"))
s->opcode = "<IFA>";
else if (!strcmp (s->opcode, "<IFB>"))
s->opcode = "<IFAE>";
else if (!strcmp (s->opcode, "<IFAE>"))
s->opcode = "<IFB>";
else if (!strcmp (s->opcode, "<IFA>"))
s->opcode = "<IFBE>";
}
typedef sblock_t *(*statement_f) (sblock_t *, expr_t *);
typedef sblock_t *(*expr_f) (sblock_t *, expr_t *, operand_t **);
static sblock_t *statement_subexpr (sblock_t *sblock, expr_t *e,
operand_t **op);
static sblock_t *statement_slist (sblock_t *sblock, expr_t *e);
static sblock_t *
statement_branch (sblock_t *sblock, expr_t *e)
{
statement_t *s = 0;
const char *opcode;
if (e->type == ex_uexpr && e->e.expr.op == 'g') {
s = new_statement (st_flow, "<GOTO>", e);
s->opa = label_operand (e->e.expr.e1);
} else {
if (e->e.expr.op == 'g') {
s = new_statement (st_flow, "<JUMPB>", e);
sblock = statement_subexpr (sblock, e->e.expr.e1, &s->opa);
sblock = statement_subexpr (sblock, e->e.expr.e2, &s->opb);
} else {
opcode = convert_op (e->e.expr.op);
s = new_statement (st_flow, opcode, e);
sblock = statement_subexpr (sblock, e->e.expr.e1, &s->opa);
s->opb = label_operand (e->e.expr.e2);
}
}
sblock_add_statement (sblock, s);
sblock->next = new_sblock ();
return sblock->next;
}
static sblock_t *
expr_address (sblock_t *sblock, expr_t *e, operand_t **op)
{
statement_t *s;
s = new_statement (st_expr, "&", e);
sblock = statement_subexpr (sblock, e->e.expr.e1, &s->opa);
s->opc = temp_operand (e->e.expr.type, e);
sblock_add_statement (sblock, s);
*(op) = s->opc;
return sblock;
}
static operand_t *
operand_address (operand_t *reference, expr_t *e)
{
def_t *def;
type_t *type;
int offset = 0;
type = reference->type;
switch (reference->op_type) {
case op_def:
// assumes aliasing is only one level deep which should be the
// case
def = reference->def;
if (def->alias) {
offset = def->offset;
def = def->alias;
}
return value_operand (new_pointer_val (offset, type, def, 0), e);
case op_temp:
// assumes aliasing is only one level deep which should be the
// case
if (reference->tempop.alias) {
offset = reference->tempop.offset;
reference = reference->tempop.alias;
}
return value_operand (new_pointer_val (offset, type, 0,
reference), e);
case op_alias:
//op_alias comes only from alias_operand and that is called
// by dags, so not expected
case op_value:
case op_label:
case op_nil:
case op_pseudo:
break;
}
internal_error (e, "invalid operand type for operand address: %s",
op_type_names[reference->op_type]);
}
static __attribute__((pure)) int
is_const_ptr (expr_t *e)
{
if ((e->type != ex_value || e->e.value->lltype != ev_pointer)
|| !(POINTER_VAL (e->e.value->v.pointer) >= 0
&& POINTER_VAL (e->e.value->v.pointer) < 65536)) {
return 0;
}
return 1;
}
static __attribute__((pure)) int
is_indirect (expr_t *e)
{
if ((e->type == ex_expr || e->type == ex_uexpr)
&& e->e.expr.op == '.') {
return 1;
}
return 0;
}
static sblock_t *
expr_assign_copy (sblock_t *sblock, expr_t *e, operand_t **op, operand_t *src)
{
statement_t *s;
expr_t *dst_expr = e->e.expr.e1;
expr_t *src_expr = e->e.expr.e2;
type_t *dst_type = get_type (dst_expr);
type_t *src_type = get_type (src_expr);
unsigned count;
expr_t *count_expr;
operand_t *dst = 0;
operand_t *size = 0;
static const char *opcode_sets[][2] = {
{"<MOVE>", "<MOVEP>"},
{"<MEMSET>", "<MEMSETP>"},
};
const unsigned max_count = 1 << 16;
const char **opcode_set = opcode_sets[0];
const char *opcode;
int need_ptr = 0;
st_type_t type = st_move;
if ((src && src->op_type == op_nil) || src_expr->type == ex_nil) {
// switch to memset because nil is type agnostic 0 and structures
// can be any size
src_expr = new_integer_expr (0);
sblock = statement_subexpr (sblock, src_expr, &src);
opcode_set = opcode_sets[1];
if (op) {
*op = nil_operand (dst_type, src_expr);
}
type = st_memset;
if (is_indirect (dst_expr)) {
need_ptr = 1;
}
} else {
if (is_indirect (src_expr)) {
src_expr = expr_file_line (address_expr (src_expr, 0, 0), e);
need_ptr = 1;
}
if (!src) {
// This is the very right-hand node of a non-nil assignment chain
// (there may be more chains somwhere within src_expr, but they
// are not part of this chain as they are separated by another
// expression).
sblock = statement_subexpr (sblock, src_expr, &src);
}
// send the source operand back up through the assignment chain
// before modifying src if its address is needed
if (op) {
*op = src;
}
if (is_indirect (dst_expr)) {
src = operand_address (src, src_expr);
need_ptr = 1;
}
}
if (need_ptr) {
// dst_expr and/or src_expr are dereferenced pointers, so need to
// un-dereference dst_expr to get the pointer and switch to movep
// or memsetp instructions.
dst_expr = expr_file_line (address_expr (dst_expr, 0, 0), e);
need_ptr = 1;
}
sblock = statement_subexpr (sblock, dst_expr, &dst);
if (type_size (dst_type) != type_size (src_type)) {
bug (e, "dst and src sizes differ in expr_assign_copy: %d %d",
type_size (dst_type), type_size (src_type));
}
count = min (type_size (dst_type), type_size (src_type));
if (count < (1 << 16)) {
count_expr = expr_file_line (new_short_expr (count), e);
} else {
count_expr = expr_file_line (new_integer_expr (count), e);
}
sblock = statement_subexpr (sblock, count_expr, &size);
if (count < max_count && !need_ptr) {
opcode = opcode_set[0];
} else {
opcode = opcode_set[1];
type++; // from st_move/st_memset to st_ptrmove/st_ptrmemset
}
s = new_statement (type, opcode, e);
s->opa = src;
s->opb = size;
s->opc = dst;
sblock_add_statement (sblock, s);
return sblock;
}
static sblock_t *
expr_assign (sblock_t *sblock, expr_t *e, operand_t **op)
{
statement_t *s;
expr_t *src_expr = e->e.expr.e2;
expr_t *dst_expr = e->e.expr.e1;
type_t *dst_type = get_type (dst_expr);
operand_t *src = 0;
operand_t *dst = 0;
operand_t *ofs = 0;
const char *opcode = convert_op (e->e.expr.op);
st_type_t type;
if (src_expr->type == ex_expr && src_expr->e.expr.op == '=') {
sblock = statement_subexpr (sblock, src_expr, &src);
if (is_structural (dst_type)) {
return expr_assign_copy (sblock, e, op, src);
}
if (is_indirect (dst_expr)) {
goto dereference_dst;
} else {
sblock = statement_subexpr (sblock, dst_expr, &dst);
}
} else {
if (is_structural (dst_type)) {
return expr_assign_copy (sblock, e, op, src);
}
if (is_indirect (dst_expr)) {
// If both dst_expr and src_expr are indirect, then a staging temp
// is needed, but emitting src_expr first generates that temp
// because src is null. If src_expr is not indirect and is a simple
// variable reference, then just the ref will be generated and thus
// will be assigned to the dereferenced destination. If src_expr
// is not simple, then a temp will be generated, so all good.
sblock = statement_subexpr (sblock, src_expr, &src);
goto dereference_dst;
} else {
// dst_expr is direct and known to be an l-value, so emitting
// its expression will simply generate a reference to that l-value
// which will be used as the default location to store src_expr's
// result
sblock = statement_subexpr (sblock, dst_expr, &dst);
src = dst;
sblock = statement_subexpr (sblock, src_expr, &src);
}
}
type = st_assign;
if (0) {
dereference_dst:
// dst_expr is a dereferenced pointer, so need to un-dereference it
// to get the pointer and switch to storep instructions.
dst_expr = expr_file_line (address_expr (dst_expr, 0, 0), e);
opcode = ".="; // FIXME find a nicer representation (lose strings?)
if (dst_expr->type == ex_expr && !is_const_ptr (dst_expr->e.expr.e1)) {
sblock = statement_subexpr (sblock, dst_expr->e.expr.e1, &dst);
sblock = statement_subexpr (sblock, dst_expr->e.expr.e2, &ofs);
} else {
sblock = statement_subexpr (sblock, dst_expr, &dst);
ofs = 0;
}
type = st_ptrassign;
}
if (op) {
*op = src;
}
if (src == dst) {
return sblock;
}
if (is_entity (dst->type) && ofs && is_field (ofs->type)) {
s = new_statement (st_expr, "&", dst_expr);
s->opa = dst;
s->opb = ofs;
s->opc = temp_operand (&type_pointer, dst_expr);
sblock_add_statement (sblock, s);
dst = s->opc;
ofs = 0;
}
s = new_statement (type, opcode, e);
s->opa = src;
s->opb = dst;
s->opc = ofs;
sblock_add_statement (sblock, s);
return sblock;
}
static sblock_t *
expr_move (sblock_t *sblock, expr_t *e, operand_t **op)
{
statement_t *s;
type_t *type = e->e.expr.type;
expr_t *dst_expr = e->e.expr.e1;
expr_t *src_expr = e->e.expr.e2;
expr_t *size_expr;
operand_t *dst = 0;
operand_t *src = 0;
operand_t *size = 0;
if (!op)
op = &dst;
size_expr = new_short_expr (type_size (type));
sblock = statement_subexpr (sblock, dst_expr, op);
dst = *op;
sblock = statement_subexpr (sblock, src_expr, &src);
sblock = statement_subexpr (sblock, size_expr, &size);
s = new_statement (e->e.expr.op == 'm' ? st_move : st_ptrmove,
convert_op (e->e.expr.op), e);
s->opa = src;
s->opb = size;
s->opc = dst;
sblock_add_statement (sblock, s);
return sblock;
}
static sblock_t *
vector_call (sblock_t *sblock, expr_t *earg, expr_t *param, int ind,
operand_t **op)
{
//FIXME this should be done in the expression tree
expr_t *a, *v, *n;
int i;
static const char *names[] = {"x", "y", "z"};
for (i = 0; i < 3; i++) {
n = new_name_expr (names[i]);
v = new_float_expr (earg->e.value->v.vector_val[i]);
a = assign_expr (field_expr (param, n), v);
param = new_param_expr (get_type (earg), ind);
a->line = earg->line;
a->file = earg->file;
sblock = statement_slist (sblock, a);
}
sblock = statement_subexpr (sblock, param, op);
return sblock;
}
static sblock_t *
expr_call (sblock_t *sblock, expr_t *call, operand_t **op)
{
expr_t *func = call->e.expr.e1;
expr_t *args = call->e.expr.e2;
expr_t *a;
expr_t *param;
operand_t *arguments[2] = {0, 0};
int count = 0;
int ind;
const char *opcode;
const char *pref = "";
statement_t *s;
// function arguments are in reverse order
for (a = args; a; a = a->next)
count++;
ind = count;
for (a = args; a; a = a->next) {
ind--;
param = new_param_expr (get_type (a), ind);
if (count && options.code.progsversion != PROG_ID_VERSION && ind < 2) {
pref = "R";
sblock = statement_subexpr (sblock, param, &arguments[ind]);
if (options.code.vector_calls && a->type == ex_value
&& a->e.value->lltype == ev_vector)
sblock = vector_call (sblock, a, param, ind, &arguments[ind]);
else
sblock = statement_subexpr (sblock, a, &arguments[ind]);
continue;
}
if (is_struct (get_type (param))) {
expr_t *mov = assign_expr (param, a);
mov->line = a->line;
mov->file = a->file;
sblock = statement_slist (sblock, mov);
} else {
if (options.code.vector_calls && a->type == ex_value
&& a->e.value->lltype == ev_vector) {
sblock = vector_call (sblock, a, param, ind, 0);
} else {
operand_t *p = 0;
operand_t *arg;
sblock = statement_subexpr (sblock, param, &p);
arg = p;
sblock = statement_subexpr (sblock, a, &arg);
if (arg != p) {
s = new_statement (st_assign, "=", a);
s->opa = arg;
s->opb = p;
sblock_add_statement (sblock, s);
}
}
}
}
opcode = va (0, "<%sCALL%d>", pref, count);
s = new_statement (st_func, opcode, call);
sblock = statement_subexpr (sblock, func, &s->opa);
s->opb = arguments[0];
s->opc = arguments[1];
sblock_add_statement (sblock, s);
sblock->next = new_sblock ();
return sblock->next;
}
static statement_t *
lea_statement (operand_t *pointer, operand_t *offset, expr_t *e)
{
statement_t *s = new_statement (st_expr, "&", e);
s->opa = pointer;
s->opb = offset;
s->opc = temp_operand (&type_pointer, e);
return s;
}
static sblock_t *
expr_deref (sblock_t *sblock, expr_t *deref, operand_t **op)
{
type_t *type = deref->e.expr.type;
expr_t *e;
e = deref->e.expr.e1;
if (e->type == ex_uexpr && e->e.expr.op == '&'
&& e->e.expr.e1->type == ex_symbol) {
if (e->e.expr.e1->e.symbol->sy_type != sy_var)
internal_error (e, "address of non-var");
*op = def_operand (e->e.expr.e1->e.symbol->s.def, type, e);
} else if (e->type == ex_expr && e->e.expr.op == '&') {
statement_t *s;
operand_t *ptr = 0;
operand_t *offs = 0;
sblock = statement_subexpr (sblock, e->e.expr.e1, &ptr);
sblock = statement_subexpr (sblock, e->e.expr.e2, &offs);
if (!*op)
*op = temp_operand (type, e);
if (low_level_type (type) == ev_void) {
operand_t *src_addr;
operand_t *dst_addr;
s = lea_statement (ptr, offs, e);
src_addr = s->opc;
sblock_add_statement (sblock, s);
dst_addr = operand_address (*op, e);
s = new_statement (st_ptrmove, "<MOVEP>", deref);
s->opa = src_addr;
//FIXME large types
s->opb = short_operand (type_size (type), e);
s->opc = dst_addr;
sblock_add_statement (sblock, s);
} else {
s = new_statement (st_expr, ".", deref);
s->opa = ptr;
s->opb = offs;
s->opc = *op;
sblock_add_statement (sblock, s);
}
} else if (e->type == ex_value && e->e.value->lltype == ev_pointer) {
ex_pointer_t *ptr = &e->e.value->v.pointer;
*op = def_operand (alias_def (ptr->def, ptr->type, ptr->val),
ptr->type, e);
} else {
statement_t *s;
operand_t *ptr = 0;
sblock = statement_subexpr (sblock, e, &ptr);
if (!*op)
*op = temp_operand (type, e);
s = new_statement (st_expr, ".", deref);
s->opa = ptr;
s->opb = short_operand (0, e);
s->opc = *op;
sblock_add_statement (sblock, s);
}
return sblock;
}
static sblock_t *
expr_block (sblock_t *sblock, expr_t *e, operand_t **op)
{
if (!e->e.block.result)
internal_error (e, "block sub-expression without result");
sblock = statement_slist (sblock, e->e.block.head);
sblock = statement_subexpr (sblock, e->e.block.result, op);
return sblock;
}
static sblock_t *
expr_alias (sblock_t *sblock, expr_t *e, operand_t **op)
{
operand_t *aop = 0;
operand_t *top;
type_t *type;
def_t *def;
int offset = 0;
if (e->e.alias.offset) {
offset = expr_integer (e->e.alias.offset);
}
type = e->e.alias.type;
sblock = statement_subexpr (sblock, e->e.alias.expr, &aop);
if (type_compatible (aop->type, type)) {
//FIXME type_compatible??? shouldn't that be type_size ==?
if (offset) {
internal_error (e, "offset alias of same size type");
}
*op = aop;
return sblock;
}
if (aop->op_type == op_temp) {
while (aop->tempop.alias) {
aop = aop->tempop.alias;
if (aop->op_type != op_temp)
internal_error (e, "temp alias of non-temp var");
if (aop->tempop.alias)
bug (e, "aliased temp alias");
}
for (top = aop->tempop.alias_ops; top; top = top->next) {
if (top->type == type && top->tempop.offset == offset) {
break;
}
}
if (!top) {
top = temp_operand (type, e);
top->tempop.alias = aop;
top->tempop.offset = offset;
top->next = aop->tempop.alias_ops;
aop->tempop.alias_ops = top;
}
*op = top;
} else if (aop->op_type == op_def) {
def = aop->def;
while (def->alias)
def = def->alias;
*op = def_operand (alias_def (def, type, offset), 0, e);
} else if (aop->op_type == op_value) {
*op = value_operand (aop->value, e);
(*op)->type = type;
} else {
internal_error (e, "invalid alias target: %s: %s",
optype_str (aop->op_type), operand_string (aop));
}
return sblock;
}
static sblock_t *
expr_expr (sblock_t *sblock, expr_t *e, operand_t **op)
{
const char *opcode;
statement_t *s;
switch (e->e.expr.op) {
case 'c':
sblock = expr_call (sblock, e, op);
break;
case '=':
sblock = expr_assign (sblock, e, op);
break;
case 'm':
case 'M':
sblock = expr_move (sblock, e, op);
break;
default:
opcode = convert_op (e->e.expr.op);
if (!opcode)
internal_error (e, "ice ice baby");
s = new_statement (st_expr, opcode, e);
sblock = statement_subexpr (sblock, e->e.expr.e1, &s->opa);
sblock = statement_subexpr (sblock, e->e.expr.e2, &s->opb);
if (!*op)
*op = temp_operand (e->e.expr.type, e);
s->opc = *op;
sblock_add_statement (sblock, s);
break;
}
return sblock;
}
static sblock_t *
expr_cast (sblock_t *sblock, expr_t *e, operand_t **op)
{
type_t *src_type;
type_t *type = e->e.expr.type;
statement_t *s;
src_type = get_type (e->e.expr.e1);
if (is_scalar (src_type) && is_scalar (type)) {
operand_t *src = 0;
sblock = statement_subexpr (sblock, e->e.expr.e1, &src);
*op = temp_operand (e->e.expr.type, e);
s = new_statement (st_expr, "<CONV>", e);
s->opa = src;
s->opc = *op;
sblock_add_statement (sblock, s);
} else {
sblock = expr_alias (sblock, e, op);
}
return sblock;
}
static sblock_t *
expr_negate (sblock_t *sblock, expr_t *e, operand_t **op)
{
expr_t *neg;
expr_t *zero;
zero = new_nil_expr ();
zero->file = e->file;
zero->line = e->line;
convert_nil (zero, e->e.expr.type);
neg = binary_expr ('-', zero, e->e.expr.e1);
neg->file = e->file;
neg->line = e->line;
return statement_subexpr (sblock, neg, op);
}
static sblock_t *
expr_uexpr (sblock_t *sblock, expr_t *e, operand_t **op)
{
const char *opcode;
statement_t *s;
switch (e->e.expr.op) {
case '&':
sblock = expr_address (sblock, e, op);
break;
case '.':
sblock = expr_deref (sblock, e, op);
break;
case 'C':
sblock = expr_cast (sblock, e, op);
break;
case '-':
// progs has no neg instruction!?!
sblock = expr_negate (sblock, e, op);
break;
default:
opcode = convert_op (e->e.expr.op);
if (!opcode)
internal_error (e, "ice ice baby");
s = new_statement (st_expr, opcode, e);
sblock = statement_subexpr (sblock, e->e.expr.e1, &s->opa);
if (!*op)
*op = temp_operand (e->e.expr.type, e);
s->opc = *op;
sblock_add_statement (sblock, s);
}
return sblock;
}
static sblock_t *
expr_def (sblock_t *sblock, expr_t *e, operand_t **op)
{
*op = def_operand (e->e.def, e->e.def->type, e);
return sblock;
}
static sblock_t *
expr_symbol (sblock_t *sblock, expr_t *e, operand_t **op)
{
symbol_t *sym = e->e.symbol;
if (sym->sy_type == sy_var) {
*op = def_operand (sym->s.def, sym->type, e);
} else if (sym->sy_type == sy_const) {
*op = value_operand (sym->s.value, e);
} else if (sym->sy_type == sy_func) {
if (!sym->s.func) {
make_function (sym, 0, pr.symtab->space, sc_extern);
}
*op = def_operand (sym->s.func->def, 0, e);
} else {
internal_error (e, "unexpected symbol type: %s for %s",
symtype_str (sym->sy_type), sym->name);
}
return sblock;
}
static sblock_t *
expr_temp (sblock_t *sblock, expr_t *e, operand_t **op)
{
if (!e->e.temp.op)
e->e.temp.op = temp_operand (e->e.temp.type, e);
*op = e->e.temp.op;
return sblock;
}
static sblock_t *
expr_vector_e (sblock_t *sblock, expr_t *e, operand_t **op)
{
expr_t *x, *y, *z, *w;
expr_t *s, *v;
expr_t *ax, *ay, *az, *aw;
expr_t *as, *av;
expr_t *tmp;
type_t *vec_type = get_type (e);
int file = pr.source_file;
int line = pr.source_line;
pr.source_file = e->file;
pr.source_line = e->line;
tmp = new_temp_def_expr (vec_type);
if (is_vector(vec_type)) {
// guaranteed to have three elements
x = e->e.vector.list;
y = x->next;
z = y->next;
ax = new_name_expr ("x");
ay = new_name_expr ("y");
az = new_name_expr ("z");
ax = assign_expr (field_expr (tmp, ax), x);
ay = assign_expr (field_expr (tmp, ay), y);
az = assign_expr (field_expr (tmp, az), z);
sblock = statement_slist (sblock, ax);
sblock = statement_slist (sblock, ay);
sblock = statement_slist (sblock, az);
} else {
// guaranteed to have two or four elements
if (e->e.vector.list->next->next) {
// four vals: x, y, z, w
x = e->e.vector.list;
y = x->next;
z = y->next;
w = z->next;
ax = new_name_expr ("x");
ay = new_name_expr ("y");
az = new_name_expr ("z");
aw = new_name_expr ("w");
ax = assign_expr (field_expr (tmp, ax), x);
ay = assign_expr (field_expr (tmp, ay), y);
az = assign_expr (field_expr (tmp, az), z);
aw = assign_expr (field_expr (tmp, aw), w);
sblock = statement_slist (sblock, ax);
sblock = statement_slist (sblock, ay);
sblock = statement_slist (sblock, az);
sblock = statement_slist (sblock, aw);
} else {
// v, s
v = e->e.vector.list;
s = v->next;
av = new_name_expr ("v");
as = new_name_expr ("s");
av = assign_expr (field_expr (tmp, av), v);
as = assign_expr (field_expr (tmp, as), s);
sblock = statement_slist (sblock, av);
sblock = statement_slist (sblock, as);
}
}
pr.source_file = file;
pr.source_line = line;
sblock = statement_subexpr (sblock, tmp, op);
return sblock;
}
static sblock_t *
expr_nil (sblock_t *sblock, expr_t *e, operand_t **op)
{
type_t *nil = e->e.nil;
expr_t *size_expr;
size_t nil_size;
operand_t *zero;
operand_t *size;
statement_t *s;
if (!is_struct (nil) && !is_array (nil)) {
*op = value_operand (new_nil_val (nil), e);
return sblock;
}
if (!*op) {
*op = temp_operand (nil, e);
}
nil_size = type_size (nil);
if (nil_size < 0x10000) {
size_expr = new_short_expr (nil_size);
} else {
size_expr = new_integer_expr (nil_size);
}
sblock = statement_subexpr (sblock, new_integer_expr(0), &zero);
sblock = statement_subexpr (sblock, size_expr, &size);
s = new_statement (st_memset, "<MEMSET>", e);
s->opa = zero;
s->opb = size;
s->opc = *op;
sblock_add_statement (sblock, s);
return sblock;
}
static sblock_t *
expr_value (sblock_t *sblock, expr_t *e, operand_t **op)
{
*op = value_operand (e->e.value, e);
return sblock;
}
static sblock_t *
expr_selector (sblock_t *sblock, expr_t *e, operand_t **op)
{
return statement_subexpr (sblock, e->e.selector.sel_ref, op);
}
static sblock_t *
statement_subexpr (sblock_t *sblock, expr_t *e, operand_t **op)
{
static expr_f sfuncs[ex_count] = {
[ex_block] = expr_block,
[ex_expr] = expr_expr,
[ex_uexpr] = expr_uexpr,
[ex_def] = expr_def,
[ex_symbol] = expr_symbol,
[ex_temp] = expr_temp,
[ex_vector] = expr_vector_e,
[ex_nil] = expr_nil,
[ex_value] = expr_value,
[ex_selector] = expr_selector,
[ex_alias] = expr_alias,
};
if (!e) {
*op = 0;
return sblock;
}
if (e->type >= ex_count)
internal_error (e, "bad sub-expression type");
if (!sfuncs[e->type])
internal_error (e, "unexpected sub-expression type: %s",
expr_names[e->type]);
sblock = sfuncs[e->type] (sblock, e, op);
return sblock;
}
static sblock_t *
statement_ignore (sblock_t *sblock, expr_t *e)
{
return sblock;
}
static sblock_t *
statement_state (sblock_t *sblock, expr_t *e)
{
statement_t *s;
s = new_statement (st_state, "<STATE>", e);
sblock = statement_subexpr (sblock, e->e.state.frame, &s->opa);
sblock = statement_subexpr (sblock, e->e.state.think, &s->opb);
sblock = statement_subexpr (sblock, e->e.state.step, &s->opc);
sblock_add_statement (sblock, s);
return sblock;
}
static void
build_bool_block (expr_t *block, expr_t *e)
{
switch (e->type) {
case ex_bool:
build_bool_block (block, e->e.bool.e);
return;
case ex_label:
e->next = 0;
append_expr (block, e);
return;
case ex_expr:
if (e->e.expr.op == OR || e->e.expr.op == AND) {
build_bool_block (block, e->e.expr.e1);
build_bool_block (block, e->e.expr.e2);
} else if (e->e.expr.op == 'i') {
e->next = 0;
append_expr (block, e);
} else if (e->e.expr.op == 'n') {
e->next = 0;
append_expr (block, e);
} else {
e->next = 0;
append_expr (block, e);
}
return;
case ex_uexpr:
if (e->e.expr.op == 'g') {
e->next = 0;
append_expr (block, e);
return;
}
break;
case ex_block:
if (!e->e.block.result) {
expr_t *t;
for (e = e->e.block.head; e; e = t) {
t = e->next;
build_bool_block (block, e);
}
return;
}
break;
default:
;
}
internal_error (e, "bad boolean");
}
static int
is_goto_expr (expr_t *e)
{
return e && e->type == ex_uexpr && e->e.expr.op == 'g';
}
static int
is_if_expr (expr_t *e)
{
return e && e->type == ex_expr && e->e.expr.op == 'i';
}
static int
is_ifnot_expr (expr_t *e)
{
return e && e->type == ex_expr && e->e.expr.op == 'n';
}
static sblock_t *
statement_bool (sblock_t *sblock, expr_t *e)
{
expr_t **s;
expr_t *l;
expr_t *block = new_block_expr ();
build_bool_block (block, e);
s = &block->e.block.head;
while (*s) {
if (is_if_expr (*s) && is_goto_expr ((*s)->next)) {
l = (*s)->e.expr.e2;
for (e = (*s)->next->next; e && e->type == ex_label; e = e->next) {
if (e == l) {
l->e.label.used--;
e = *s;
e->e.expr.op = 'n';
e->e.expr.e2 = e->next->e.expr.e1;
e->next = e->next->next;
break;
}
}
s = &(*s)->next;
} else if (is_ifnot_expr (*s) && is_goto_expr ((*s)->next)) {
l = (*s)->e.expr.e2;
for (e = (*s)->next->next; e && e->type == ex_label; e = e->next) {
if (e == l) {
l->e.label.used--;
e = *s;
e->e.expr.op = 'i';
e->e.expr.e2 = e->next->e.expr.e1;
e->next = e->next->next;
break;
}
}
s = &(*s)->next;
} else if (is_goto_expr (*s)) {
l = (*s)->e.expr.e1;
for (e = (*s)->next; e && e->type == ex_label; e = e->next) {
if (e == l) {
l->e.label.used--;
*s = (*s)->next;
l = 0;
break;
}
}
if (l)
s = &(*s)->next;
} else {
s = &(*s)->next;
}
}
sblock = statement_slist (sblock, block->e.block.head);
return sblock;
}
static sblock_t *
statement_label (sblock_t *sblock, expr_t *e)
{
if (sblock->statements) {
sblock->next = new_sblock ();
sblock = sblock->next;
}
if (e->e.label.used) {
e->e.label.dest = sblock;
e->e.label.next = sblock->labels;
sblock->labels = &e->e.label;
} else {
if (e->e.label.symbol) {
warning (e, "unused label %s", e->e.label.symbol->name);
} else {
debug (e, "dropping unused label %s", e->e.label.name);
}
}
return sblock;
}
static sblock_t *
statement_block (sblock_t *sblock, expr_t *e)
{
if (sblock->statements) {
sblock->next = new_sblock ();
sblock = sblock->next;
}
sblock = statement_slist (sblock, e->e.block.head);
return sblock;
}
static sblock_t *
statement_expr (sblock_t *sblock, expr_t *e)
{
switch (e->e.expr.op) {
case 'c':
sblock = expr_call (sblock, e, 0);
break;
case 'g':
case 'i':
case 'n':
case IFBE:
case IFB:
case IFAE:
case IFA:
sblock = statement_branch (sblock, e);
break;
case '=':
sblock = expr_assign (sblock, e, 0);
break;
case 'm':
case 'M':
sblock = expr_move (sblock, e, 0);
break;
default:
if (e->e.expr.op < 256)
debug (e, "e %c", e->e.expr.op);
else
debug (e, "e %d", e->e.expr.op);
if (options.warnings.executable)
warning (e, "Non-executable statement;"
" executing programmer instead.");
}
return sblock;
}
static sblock_t *
statement_uexpr (sblock_t *sblock, expr_t *e)
{
const char *opcode;
statement_t *s;
switch (e->e.expr.op) {
case 'r':
debug (e, "RETURN");
opcode = "<RETURN>";
if (!e->e.expr.e1) {
if (options.code.progsversion != PROG_ID_VERSION) {
opcode = "<RETURN_V>";
} else {
e->e.expr.e1 = new_float_expr (0);
}
}
s = new_statement (st_func, opcode, e);
if (e->e.expr.e1) {
s->opa = return_operand (get_type (e->e.expr.e1), e);
sblock = statement_subexpr (sblock, e->e.expr.e1, &s->opa);
}
sblock_add_statement (sblock, s);
sblock->next = new_sblock ();
sblock = sblock->next;
break;
case 'g':
sblock = statement_branch (sblock, e);
break;
default:
debug (e, "e ue %d", e->e.expr.op);
if (options.warnings.executable)
warning (e, "Non-executable statement;"
" executing programmer instead.");
}
return sblock;
}
static sblock_t *
statement_memset (sblock_t *sblock, expr_t *e)
{
expr_t *dst = e->e.memset.dst;
expr_t *val = e->e.memset.val;
expr_t *count = e->e.memset.count;
const char *opcode = "<MEMSET>";
statement_t *s;
if (is_constant (count)) {
if (is_integer (get_type (count))
&& (unsigned) expr_integer (count) < 0x10000) {
count = new_short_expr (expr_integer (count));
}
if (is_uinteger (get_type (count)) && expr_integer (count) < 0x10000) {
count = new_short_expr (expr_uinteger (count));
}
}
s = new_statement (st_move, opcode, e);
sblock = statement_subexpr (sblock, dst, &s->opc);
sblock = statement_subexpr (sblock, count, &s->opb);
sblock = statement_subexpr (sblock, val, &s->opa);
sblock_add_statement (sblock, s);
return sblock;
}
static sblock_t *
statement_nonexec (sblock_t *sblock, expr_t *e)
{
if (!e->rvalue && options.warnings.executable)
warning (e, "Non-executable statement; executing programmer instead.");
return sblock;
}
static sblock_t *
statement_slist (sblock_t *sblock, expr_t *e)
{
static statement_f sfuncs[ex_count] = {
[ex_error] = statement_ignore,
[ex_state] = statement_state,
[ex_bool] = statement_bool,
[ex_label] = statement_label,
[ex_block] = statement_block,
[ex_expr] = statement_expr,
[ex_uexpr] = statement_uexpr,
[ex_def] = statement_nonexec,
[ex_symbol] = statement_nonexec,
[ex_temp] = statement_nonexec,
[ex_vector] = statement_nonexec,
[ex_nil] = statement_nonexec,
[ex_value] = statement_nonexec,
[ex_memset] = statement_memset,
};
for (/**/; e; e = e->next) {
if (e->type >= ex_count || !sfuncs[e->type])
internal_error (e, "bad expression type");
sblock = sfuncs[e->type] (sblock, e);
}
return sblock;
}
static void
move_labels (sblock_t *dst, sblock_t *src)
{
ex_label_t *src_labels = src->labels;
if (!src_labels)
return;
src_labels->dest = dst;
while (src_labels->next) {
src_labels = src_labels->next;
src_labels->dest = dst;
}
src_labels->next = dst->labels;
dst->labels = src->labels;
src->labels = 0;
}
static void
move_code (sblock_t *dst, sblock_t *src)
{
if (!src->statements)
return;
*dst->tail = src->statements;
dst->tail = src->tail;
src->statements = 0;
src->tail = &src->statements;
}
static sblock_t *
merge_blocks (sblock_t *blocks)
{
sblock_t **sb;
sblock_t *sblock;
statement_t *s;
if (!blocks)
return blocks;
// merge any blocks that can be merged
for (sblock = blocks; sblock; sblock = sblock->next) {
if (sblock->statements && sblock->next) {
s = (statement_t *) sblock->tail;
// func and flow statements end blocks
if (s->type >= st_func)
continue;
// labels begin blocks
if (sblock->next->labels)
continue;
// blocks can be merged
move_code (sblock, sblock->next);
}
}
for (sb = &blocks; (*sb)->next;) {
if (!(*sb)->statements) {
// empty non-final block
// move labels from empty block to next block
if ((*sb)->labels)
move_labels ((*sb)->next, (*sb));
sblock = *sb;
*sb = (*sb)->next;
free_sblock (sblock);
continue;
}
sb = &(*sb)->next;
}
// so long as blocks doesn't become null, remove an empty final block
if (sb != &blocks) {
if (!(*sb)->statements && !(*sb)->labels) {
// empty final block with no labels
sblock = *sb;
*sb = (*sb)->next;
free_sblock (sblock);
}
}
return blocks;
}
static void
remove_label_from_dest (ex_label_t *label)
{
sblock_t *sblock;
ex_label_t **l;
if (!label || !label->dest)
return;
debug (0, "dropping deceased label %s", label->name);
sblock = label->dest;
label->dest = 0;
for (l = &sblock->labels; *l; l = &(*l)->next) {
if (*l == label) {
*l = label->next;
label->next = 0;
break;
}
}
}
static void
unuse_label (ex_label_t *label)
{
if (label && !--label->used)
remove_label_from_dest (label);
}
static int
thread_jumps (sblock_t *blocks)
{
sblock_t *sblock;
int did_something = 0;
if (!blocks)
return 0;
for (sblock = blocks; sblock; sblock = sblock->next) {
statement_t *s;
ex_label_t **label, *l;
if (!sblock->statements)
continue;
s = (statement_t *) sblock->tail;
if (statement_is_goto (s)) {
label = &s->opa->label;
if (!(*label)->dest && (*label)->symbol) {
error (s->opa->expr, "undefined label `%s'",
(*label)->symbol->name);
(*label)->symbol = 0;
}
} else if (statement_is_cond (s)) {
label = &s->opb->label;
} else {
continue;
}
for (l = *label;
l->dest && l->dest->statements
&& statement_is_goto (l->dest->statements);
l = l->dest->statements->opa->label) {
}
if (l != *label) {
unuse_label (*label);
l->used++;
*label = l;
did_something = 1;
}
if ((statement_is_goto (s) || statement_is_cond (s))
&& (*label)->dest == sblock->next) {
statement_t **p;
unuse_label (*label);
for (p = &sblock->statements; *p != s; p = &(*p)->next)
;
free_statement (s);
*p = 0;
sblock->tail = p;
did_something = 1;
}
}
return did_something;
}
static int
remove_dead_blocks (sblock_t *blocks)
{
sblock_t *sblock;
int did_something;
int did_anything = 0;
int pass = 0;
if (!blocks)
return 0;
do {
debug (0, "dead block pass %d", pass++);
did_something = 0;
blocks->reachable = 1;
for (sblock = blocks; sblock->next; sblock = sblock->next) {
sblock_t *sb = sblock->next;
statement_t *s;
if (sb->labels) {
sb->reachable = 1;
continue;
}
if (!sblock->statements) {
sb->reachable = 1;
continue;
}
s = (statement_t *) sblock->tail;
if (statement_is_cond (s)
&& sb->statements && statement_is_goto (sb->statements)
&& s->opb->label->dest == sb->next) {
debug (0, "merging if/goto %p %p", sblock, sb);
unuse_label (s->opb->label);
s->opb->label = sb->statements->opa->label;
s->opb->label->used++;
invert_conditional (s);
sb->reachable = 0;
for (sb = sb->next; sb; sb = sb->next)
sb->reachable = 1;
break;
} else if (!statement_is_goto (s) && !statement_is_return (s)) {
sb->reachable = 1;
continue;
}
sb->reachable = 0;
}
for (sblock = blocks; sblock; sblock = sblock->next) {
while (sblock->next && !sblock->next->reachable) {
sblock_t *sb = sblock->next;
statement_t *s;
ex_label_t *label = 0;
debug (0, "removing dead block %p", sb);
if (sb->statements) {
s = (statement_t *) sb->tail;
if (statement_is_goto (s))
label = s->opa->label;
else if (statement_is_cond (s))
label = s->opb->label;
}
unuse_label (label);
did_something = 1;
did_anything = 1;
sblock->next = sb->next;
free_sblock (sb);
}
}
} while (did_something);
return did_anything;
}
static void
super_dealloc_warning (expr_t *expr, pseudoop_t *op)
{
warning (expr,
"control may reach end of derived -dealloc without invoking %s",
op->name);
}
static void
search_for_super_dealloc (sblock_t *sblock)
{
operand_t *op;
pseudoop_t *super_dealloc = new_pseudoop ("[super dealloc]");
int super_dealloc_found = 0;
super_dealloc->next = current_func->pseudo_ops;
current_func->pseudo_ops = super_dealloc;
super_dealloc->uninitialized = super_dealloc_warning;
while (sblock) {
for (statement_t *st = sblock->statements; st; st = st->next) {
if (statement_is_return (st)) {
op = pseudo_operand (super_dealloc, st->expr);
op->next = st->use;
st->use = op;
continue;
}
if (!statement_is_call (st)) {
continue;
}
if (st->opa->op_type != op_def
|| strcmp (st->opa->def->name, "obj_msgSend_super") != 0) {
continue;
}
// FIXME this is messy (calls should have their own expression
// type)
// have effectively checked e1 above
if (st->expr->type != ex_expr) {
continue;
}
// function arguments are in reverse order, and the selector
// is the second argument (or second last in the list)
expr_t *arg;
for (arg = st->expr->e.expr.e2;
arg && arg->next && arg->next->next; arg = arg->next) {
}
if (arg && arg->next && is_selector (arg)) {
selector_t *sel = get_selector (st->expr->e.expr.e2);
if (sel && strcmp (sel->name, "dealloc") == 0) {
op = pseudo_operand (super_dealloc, st->expr);
op->next = st->use;
st->def = op;
super_dealloc_found++;
}
}
}
sblock = sblock->next;
}
// warn only when NOT optimizing because flow analysis will catch the
// missed invokation
if (!super_dealloc_found && !options.code.optimize) {
warning (0, "Derived class -dealloc does not call [super dealloc]");
}
}
static void
check_final_block (sblock_t *sblock)
{
statement_t *s = 0;
if (!sblock)
return;
while (sblock->next)
sblock = sblock->next;
if (sblock->statements) {
s = (statement_t *) sblock->tail;
if (statement_is_goto (s))
return; // the end of function is the end of a loop
if (statement_is_return (s))
return;
}
if (!is_void(current_func->sym->type->t.func.type))
warning (0, "control reaches end of non-void function");
if (s && s->type >= st_func) {
// func and flow end blocks, so we need to add a new block to take the
// return
sblock->next = new_sblock ();
sblock = sblock->next;
}
s = new_statement (st_func, "<RETURN_V>", 0);
if (options.traditional || options.code.progsversion == PROG_ID_VERSION) {
s->opcode = save_string ("<RETURN>");
s->opa = return_operand (&type_void, 0);
}
sblock_add_statement (sblock, s);
}
void
dump_dot_sblock (void *data, const char *fname)
{
print_sblock ((sblock_t *) data, fname);
}
sblock_t *
make_statements (expr_t *e)
{
sblock_t *sblock = new_sblock ();
int did_something;
int pass = 0;
class_t *class;
if (options.block_dot.expr)
dump_dot ("expr", e, dump_dot_expr);
statement_slist (sblock, e);
if (options.block_dot.initial)
dump_dot ("initial", sblock, dump_dot_sblock);
do {
did_something = thread_jumps (sblock);
if (options.block_dot.thread)
dump_dot (va (0, "thread-%d", pass), sblock, dump_dot_sblock);
did_something |= remove_dead_blocks (sblock);
sblock = merge_blocks (sblock);
if (options.block_dot.dead)
dump_dot (va (0, "dead-%d", pass), sblock, dump_dot_sblock);
pass++;
} while (did_something);
check_final_block (sblock);
if (current_class && (class = extract_class (current_class))) {
// If the class is a root class, then it is not possible for there
// to be a call to [super dealloc] so do not check. However, any
// derived class implementeing -dealloc must call [super dealloc]
// (or some other deallocator (FIXME: later))
// FIXME better check for dealloc?
if (class->super_class && !strcmp (current_func->name, "-dealloc")) {
search_for_super_dealloc (sblock);
}
}
if (options.block_dot.final)
dump_dot ("final", sblock, dump_dot_sblock);
return sblock;
}
static void
count_temp (operand_t *op)
{
if (!op)
return;
if (op->op_type == op_temp) {
while (op->tempop.alias)
op = op->tempop.alias;
op->tempop.users++;
}
}
void
statements_count_temps (sblock_t *sblock)
{
statement_t *st;
while (sblock) {
for (st = sblock->statements; st; st = st->next) {
count_temp (st->opa);
count_temp (st->opb);
count_temp (st->opc);
}
sblock = sblock->next;
}
}