quakeforge/libs/video/renderer/sw/sw_rbsp.c
Bill Currie c8472755d1 [model] Move visframe out of msurface_t
One more step towards BSP thread-safety. This one brought with it a very
noticeable speed boost (ie, not lost in the noise) thanks to the face
visframes being in tightly packed groups instead of 128 bytes apart,
though the sw render's boost is lost in the noise (but it's very
fill-rate limited).
2022-05-22 16:38:50 +09:00

557 lines
14 KiB
C

/*
sw_r_bsp.c
(description)
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <math.h>
#include <stdlib.h>
#include "qfalloca.h"
#include "QF/render.h"
#include "QF/sys.h"
#include "QF/scene/entity.h"
#include "r_internal.h"
typedef struct glbspctx_s {
mod_brush_t *brush;
entity_t *entity;
} swbspctx_t;
// current entity info
qboolean insubmodel;
vec3_t r_worldmodelorg;
mvertex_t *r_pcurrentvertbase;
static float entity_rotation[3][3];
int r_currentbkey;
typedef enum { touchessolid, drawnode, nodrawnode } solidstate_t;
#define MAX_BMODEL_VERTS 500 // 6K
#define MAX_BMODEL_EDGES 1000 // 12K
static mvertex_t *pbverts;
static bedge_t *pbedges;
static int numbverts, numbedges;
int numbtofpolys;
static btofpoly_t *pbtofpolys;
static mvertex_t *pfrontenter, *pfrontexit;
static qboolean makeclippededge;
static void
R_EntityRotate (vec3_t vec)
{
vec3_t tvec;
VectorCopy (vec, tvec);
vec[0] = DotProduct (entity_rotation[0], tvec);
vec[1] = DotProduct (entity_rotation[1], tvec);
vec[2] = DotProduct (entity_rotation[2], tvec);
}
void
R_RotateBmodel (transform_t *transform)
{
mat4f_t mat;
Transform_GetWorldMatrix (transform, mat);
VectorCopy (mat[0], entity_rotation[0]);
VectorCopy (mat[1], entity_rotation[1]);
VectorCopy (mat[2], entity_rotation[2]);
// rotate modelorg and the transformation matrix
R_EntityRotate (modelorg);
R_EntityRotate (vfwd);
R_EntityRotate (vright);
R_EntityRotate (vup);
R_TransformFrustum ();
}
static void
R_RecursiveClipBPoly (entity_t *ent, bedge_t *pedges, mnode_t *pnode,
msurface_t *psurf)
{
bedge_t *psideedges[2], *pnextedge, *ptedge;
int i, side, lastside;
float dist, frac, lastdist;
plane_t *splitplane, tplane;
mvertex_t *pvert, *plastvert, *ptvert;
mnode_t *pn;
psideedges[0] = psideedges[1] = NULL;
makeclippededge = false;
// transform the BSP plane into model space
// FIXME: cache these?
splitplane = (plane_t *) &pnode->plane;
tplane.dist = splitplane->dist +
DotProduct (r_entorigin, splitplane->normal);
tplane.normal[0] = DotProduct (entity_rotation[0], splitplane->normal);
tplane.normal[1] = DotProduct (entity_rotation[1], splitplane->normal);
tplane.normal[2] = DotProduct (entity_rotation[2], splitplane->normal);
// clip edges to BSP plane
for (; pedges; pedges = pnextedge) {
pnextedge = pedges->pnext;
// set the status for the last point as the previous point
// FIXME: cache this stuff somehow?
plastvert = pedges->v[0];
lastdist = DotProduct (plastvert->position, tplane.normal) +
tplane.dist;
if (lastdist > 0)
lastside = 0;
else
lastside = 1;
pvert = pedges->v[1];
dist = DotProduct (pvert->position, tplane.normal) + tplane.dist;
if (dist > 0)
side = 0;
else
side = 1;
if (side != lastside) {
// clipped
if (numbverts >= MAX_BMODEL_VERTS)
return;
// generate the clipped vertex
frac = lastdist / (lastdist - dist);
ptvert = &pbverts[numbverts++];
ptvert->position[0] = plastvert->position[0] +
frac * (pvert->position[0] - plastvert->position[0]);
ptvert->position[1] = plastvert->position[1] +
frac * (pvert->position[1] - plastvert->position[1]);
ptvert->position[2] = plastvert->position[2] +
frac * (pvert->position[2] - plastvert->position[2]);
// split into two edges, one on each side, and remember entering
// and exiting points
// FIXME: share the clip edge by having a winding direction flag?
if (numbedges >= (MAX_BMODEL_EDGES - 1)) {
Sys_Printf ("Out of edges for bmodel\n");
return;
}
ptedge = &pbedges[numbedges];
ptedge->pnext = psideedges[lastside];
psideedges[lastside] = ptedge;
ptedge->v[0] = plastvert;
ptedge->v[1] = ptvert;
ptedge = &pbedges[numbedges + 1];
ptedge->pnext = psideedges[side];
psideedges[side] = ptedge;
ptedge->v[0] = ptvert;
ptedge->v[1] = pvert;
numbedges += 2;
if (side == 0) {
// entering for front, exiting for back
pfrontenter = ptvert;
makeclippededge = true;
} else {
pfrontexit = ptvert;
makeclippededge = true;
}
} else {
// add the edge to the appropriate side
pedges->pnext = psideedges[side];
psideedges[side] = pedges;
}
}
// if anything was clipped, reconstitute and add the edges along the clip
// plane to both sides (but in opposite directions)
if (makeclippededge) {
if (numbedges >= (MAX_BMODEL_EDGES - 2)) {
Sys_Printf ("Out of edges for bmodel\n");
return;
}
ptedge = &pbedges[numbedges];
ptedge->pnext = psideedges[0];
psideedges[0] = ptedge;
ptedge->v[0] = pfrontexit;
ptedge->v[1] = pfrontenter;
ptedge = &pbedges[numbedges + 1];
ptedge->pnext = psideedges[1];
psideedges[1] = ptedge;
ptedge->v[0] = pfrontenter;
ptedge->v[1] = pfrontexit;
numbedges += 2;
}
// draw or recurse further
for (i = 0; i < 2; i++) {
if (psideedges[i]) {
// draw if we've reached a non-solid leaf, done if all that's left
// is a solid leaf, and continue down the tree if it's not a leaf
int child_id = pnode->children[i];
pn = r_refdef.worldmodel->brush.nodes + child_id;
// we're done with this branch if the node or leaf isn't in the PVS
if (child_id < 0) {
mleaf_t *leaf = r_refdef.worldmodel->brush.leafs + ~child_id;
if (r_leaf_visframes[~child_id] == r_visframecount
&& leaf->contents != CONTENTS_SOLID) {
r_currentbkey = leaf->key;
R_RenderBmodelFace (ent, psideedges[i], psurf);
}
} else {
if (r_node_visframes[child_id] == r_visframecount) {
R_RecursiveClipBPoly (ent, psideedges[i], pn, psurf);
}
}
}
}
}
void
R_DrawSolidClippedSubmodelPolygons (entity_t *ent, model_t *model,
mnode_t *topnode)
{
int i, j, lindex;
vec_t dot;
msurface_t *psurf;
int numsurfaces;
plane_t *pplane;
mvertex_t bverts[MAX_BMODEL_VERTS];
bedge_t bedges[MAX_BMODEL_EDGES], *pbedge;
medge_t *pedge, *pedges;
mod_brush_t *brush = &model->brush;
// FIXME: use bounding-box-based frustum clipping info?
psurf = &brush->surfaces[brush->firstmodelsurface];
numsurfaces = brush->nummodelsurfaces;
pedges = brush->edges;
for (i = 0; i < numsurfaces; i++, psurf++) {
// find which side of the node we are on
pplane = psurf->plane;
dot = DotProduct (modelorg, pplane->normal) - pplane->dist;
// draw the polygon
if (((psurf->flags & SURF_PLANEBACK) && (dot < -BACKFACE_EPSILON)) ||
(!(psurf->flags & SURF_PLANEBACK) && (dot > BACKFACE_EPSILON))) {
// FIXME: use bounding-box-based frustum clipping info?
// copy the edges to bedges, flipping if necessary so always
// clockwise winding
// FIXME: if edges and vertices get caches, these assignments must
// move outside the loop, and overflow checking must be done here
pbverts = bverts;
pbedges = bedges;
numbverts = numbedges = 0;
if (psurf->numedges > 0) {
pbedge = &bedges[numbedges];
numbedges += psurf->numedges;
for (j = 0; j < psurf->numedges; j++) {
lindex = brush->surfedges[psurf->firstedge + j];
if (lindex > 0) {
pedge = &pedges[lindex];
pbedge[j].v[0] = &r_pcurrentvertbase[pedge->v[0]];
pbedge[j].v[1] = &r_pcurrentvertbase[pedge->v[1]];
} else {
lindex = -lindex;
pedge = &pedges[lindex];
pbedge[j].v[0] = &r_pcurrentvertbase[pedge->v[1]];
pbedge[j].v[1] = &r_pcurrentvertbase[pedge->v[0]];
}
pbedge[j].pnext = &pbedge[j + 1];
}
pbedge[j - 1].pnext = NULL; // mark end of edges
R_RecursiveClipBPoly (ent, pbedge, topnode, psurf);
} else {
Sys_Error ("no edges in bmodel");
}
}
}
}
void
R_DrawSubmodelPolygons (entity_t *ent, model_t *model, int clipflags,
mleaf_t *topleaf)
{
int i;
vec_t dot;
msurface_t *psurf;
int numsurfaces;
plane_t *pplane;
mod_brush_t *brush = &model->brush;
// FIXME: use bounding-box-based frustum clipping info?
psurf = &brush->surfaces[brush->firstmodelsurface];
numsurfaces = brush->nummodelsurfaces;
for (i = 0; i < numsurfaces; i++, psurf++) {
// find which side of the node we are on
pplane = psurf->plane;
dot = DotProduct (modelorg, pplane->normal) - pplane->dist;
// draw the polygon
if (((psurf->flags & SURF_PLANEBACK) && (dot < -BACKFACE_EPSILON)) ||
(!(psurf->flags & SURF_PLANEBACK) && (dot > BACKFACE_EPSILON))) {
r_currentkey = topleaf->key;
// FIXME: use bounding-box-based frustum clipping info?
R_RenderFace (ent, psurf, clipflags);
}
}
}
static inline void
visit_leaf (mleaf_t *leaf)
{
// deal with model fragments in this leaf
if (leaf->efrags)
R_StoreEfrags (leaf->efrags);
leaf->key = r_currentkey;
r_currentkey++; // all bmodels in a leaf share the same key
}
static inline int
get_side (mnode_t *node)
{
// find which side of the node we are on
vec4f_t org = r_refdef.frame.position;
return dotf (org, node->plane)[0] < 0;
}
static void
visit_node (swbspctx_t *bctx, mnode_t *node, int side, int clipflags)
{
int c;
msurface_t *surf;
entity_t *ent = bctx->entity;
mod_brush_t *brush = &ent->renderer.model->brush;
// sneaky hack for side = side ? SURF_PLANEBACK : 0;
side = (~side + 1) & SURF_PLANEBACK;
// draw stuff
if ((c = node->numsurfaces)) {
int surf_id = node->firstsurface;
surf = brush->surfaces + surf_id;
for (; c; c--, surf++, surf_id++) {
if (r_face_visframes[surf_id] != r_visframecount)
continue;
// side is either 0 or SURF_PLANEBACK
if (side ^ (surf->flags & SURF_PLANEBACK))
continue; // wrong side
if (r_drawpolys) {
if (r_worldpolysbacktofront) {
if (numbtofpolys < MAX_BTOFPOLYS) {
pbtofpolys[numbtofpolys].clipflags = clipflags;
pbtofpolys[numbtofpolys].psurf = surf;
numbtofpolys++;
}
} else {
R_RenderPoly (ent, surf, clipflags);
}
} else {
R_RenderFace (ent, surf, clipflags);
}
}
// all surfaces on the same node share the same sequence number
r_currentkey++;
}
}
static inline int
test_node (swbspctx_t *bctx, int node_id, int *clipflags)
{
int i, *pindex;
vec3_t acceptpt, rejectpt;
double d;
if (node_id < 0)
return 0;
if (r_node_visframes[node_id] != r_visframecount)
return 0;
// cull the clipping planes if not trivial accept
// FIXME: the compiler is doing a lousy job of optimizing here; it could be
// twice as fast in ASM
if (*clipflags) {
mnode_t *node = bctx->brush->nodes + node_id;
for (i = 0; i < 4; i++) {
if (!(*clipflags & (1 << i)))
continue; // don't need to clip against it
// generate accept and reject points
// FIXME: do with fast look-ups or integer tests based on the
// sign bit of the floating point values
pindex = pfrustum_indexes[i];
rejectpt[0] = (float) node->minmaxs[pindex[0]];
rejectpt[1] = (float) node->minmaxs[pindex[1]];
rejectpt[2] = (float) node->minmaxs[pindex[2]];
d = DotProduct (rejectpt, view_clipplanes[i].normal);
d -= view_clipplanes[i].dist;
if (d <= 0)
return 0;
acceptpt[0] = (float) node->minmaxs[pindex[3 + 0]];
acceptpt[1] = (float) node->minmaxs[pindex[3 + 1]];
acceptpt[2] = (float) node->minmaxs[pindex[3 + 2]];
d = DotProduct (acceptpt, view_clipplanes[i].normal);
d -= view_clipplanes[i].dist;
if (d >= 0)
*clipflags &= ~(1 << i); // node is entirely on screen
}
}
return 1;
}
static void
R_VisitWorldNodes (swbspctx_t *bctx, int clipflags)
{
typedef struct {
int node_id;
int side, clipflags;
} rstack_t;
rstack_t *node_ptr;
rstack_t *node_stack;
int front;
int side, cf;
int node_id;
mod_brush_t *brush = &bctx->entity->renderer.model->brush;
// +2 for paranoia
node_stack = alloca ((brush->depth + 2) * sizeof (rstack_t));
node_ptr = node_stack;
node_id = 0;
cf = clipflags;
while (1) {
while (test_node (bctx, node_id, &cf)) {
mnode_t *node = bctx->brush->nodes + node_id;
cf = clipflags;
side = get_side (node);
front = node->children[side];
if (test_node (bctx, front, &cf)) {
node_ptr->node_id = node_id;
node_ptr->side = side;
node_ptr->clipflags = clipflags;
node_ptr++;
clipflags = cf;
node_id = front;
continue;
}
if (front < 0) {
mleaf_t *leaf = bctx->brush->leafs + ~front;
if (leaf->contents != CONTENTS_SOLID) {
visit_leaf (leaf);
}
}
visit_node (bctx, node, side, clipflags);
node_id = node->children[side ^ 1];
}
if (node_id < 0) {
mleaf_t *leaf = bctx->brush->leafs + ~node_id;
if (leaf->contents != CONTENTS_SOLID) {
visit_leaf (leaf);
}
}
if (node_ptr != node_stack) {
node_ptr--;
node_id = node_ptr->node_id;
mnode_t *node = bctx->brush->nodes + node_id;
side = node_ptr->side;
clipflags = node_ptr->clipflags;
visit_node (bctx, node, side, clipflags);
node_id = node->children[side ^ 1];
continue;
}
break;
}
}
void
R_RenderWorld (void)
{
int i;
btofpoly_t btofpolys[MAX_BTOFPOLYS];
static entity_t worldent = {};
entity_t *ent = &worldent;
mod_brush_t *brush = &r_refdef.worldmodel->brush;
swbspctx_t bspctx = {
brush,
ent,
};
worldent.renderer.model = r_refdef.worldmodel;
pbtofpolys = btofpolys;
brush = &r_refdef.worldmodel->brush;
r_pcurrentvertbase = brush->vertexes;
R_VisitWorldNodes (&bspctx, 15);
// if the driver wants the polygons back to front, play the visible ones
// back in that order
if (r_worldpolysbacktofront) {
for (i = numbtofpolys - 1; i >= 0; i--) {
R_RenderPoly (ent, btofpolys[i].psurf, btofpolys[i].clipflags);
}
}
}