quakeforge/tools/qfvis/source/qfvis.c
2002-09-12 19:33:17 +00:00

893 lines
19 KiB
C

/*
vis.c
PVS/PHS generation tool
Copyright (C) 2002 Colin Thompson
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
static const char rcsid[] =
"$Id$";
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif
#ifdef HAVE_IO_H
# include <io.h>
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <getopt.h>
#include <errno.h>
#include <stdlib.h>
#ifdef HAVE_PTHREAD_H
# include <pthread.h>
#endif
#include "QF/cmd.h"
#include "QF/bspfile.h"
#include "QF/dstring.h"
#include "QF/mathlib.h"
#include "QF/qtypes.h"
#include "QF/quakefs.h"
#include "QF/sys.h"
#include "vis.h"
#include "options.h"
#define MAX_THREADS 4
#ifdef HAVE_PTHREAD_H
pthread_mutex_t *my_mutex;
#endif
options_t options;
int numportals;
int portalleafs;
int c_portaltest;
int c_portalpass;
int c_portalcheck;
int originalvismapsize;
int totalvis;
int count_sep;
int bitbytes; // (portalleafs + 63)>>3
int bitlongs;
int leafon; // the next leaf to be given to a thread to process
portal_t *portals;
leaf_t *leafs;
qboolean showgetleaf = true;
byte *vismap, *vismap_p, *vismap_end; // past visfile
byte *uncompressed; // [bitbytes * portalleafs]
#if 0
void
NormalizePlane (plane_t *dp)
{
vec_t ax, ay, az;
if (dp->normal[0] == -1.0) {
dp->normal[0] = 1.0;
dp->dist = -dp->dist;
return;
}
if (dp->normal[1] == -1.0) {
dp->normal[1] = 1.0;
dp->dist = -dp->dist;
return;
}
if (dp->normal[2] == -1.0) {
dp->normal[2] = 1.0;
dp->dist = -dp->dist;
return;
}
ax = fabs (dp->normal[0]);
ay = fabs (dp->normal[1]);
az = fabs (dp->normal[2]);
if (ax >= ay && ax >= az) {
if (dp->normal[0] < 0) {
VectorSubtract (vec3_origin, dp->normal, dp->normal);
dp->dist = -dp->dist;
}
return;
}
if (ay >= ax && ay >= az) {
if (dp->normal[1] < 0) {
VectorSubtract (vec3_origin, dp->normal, dp->normal);
dp->dist = -dp->dist;
}
return;
}
if (dp->normal[2] < 0) {
VectorSubtract (vec3_origin, dp->normal, dp->normal);
dp->dist = -dp->dist;
}
}
#endif
void
PlaneFromWinding (winding_t *winding, plane_t *plane)
{
vec3_t v1, v2;
// calc plane
VectorSubtract (winding->points[2], winding->points[1], v1);
VectorSubtract (winding->points[0], winding->points[1], v2);
CrossProduct (v2, v1, plane->normal);
VectorNormalize (plane->normal);
plane->dist = DotProduct (winding->points[0], plane->normal);
}
winding_t *
NewWinding (int points)
{
winding_t *winding;
int size;
if (points > MAX_POINTS_ON_WINDING)
fprintf (stderr, "NewWinding: %i points", points);
size = (int) ((winding_t *) 0)->points[points];
winding = malloc (size);
memset (winding, 0, size);
return winding;
}
void
FreeWinding (winding_t *winding)
{
if (!winding->original)
free (winding);
}
// FIXME: currently unused
void
pw (winding_t *winding)
{
int i;
for (i = 0; i < winding->numpoints; i++)
printf ("(%5.1f, %5.1f, %5.1f)\n", winding->points[i][0],
winding->points[i][1],
winding->points[i][2]);
}
// FIXME: currently unused
void
prl (leaf_t *leaf)
{
int i;
portal_t *portal;
plane_t plane;
for (i = 0; i < leaf->numportals; i++) {
portal = leaf->portals[i];
plane = portal->plane;
printf ("portal %4i to leaf %4i : %7.1f : (%4.1f, %4.1f, %4.1f)\n",
(int) (portal - portals),
portal->leaf, plane.dist,
plane.normal[0], plane.normal[1], plane.normal[2]);
}
}
winding_t *
CopyWinding (winding_t *winding)
{
int size;
winding_t *copy;
size = (int) ((winding_t *) 0)->points[winding->numpoints];
copy = malloc (size);
memcpy (copy, winding, size);
copy->original = false;
return copy;
}
/*
ClipWinding
Clips the winding to the plane, returning the new winding on the positive
side
Frees the input winding.
If keepon is true, an exactly on-plane winding will be saved, otherwise
it will be clipped away.
*/
winding_t *
ClipWinding (winding_t *in, plane_t *split, qboolean keepon)
{
int i, j;
vec_t dists[MAX_POINTS_ON_WINDING];
int sides[MAX_POINTS_ON_WINDING];
int counts[3];
vec_t dot;
vec_t *p1, *p2;
vec3_t mid;
winding_t *neww;
int maxpts;
counts[0] = counts[1] = counts[2] = 0;
// determine sides for each point
for (i = 0; i < in->numpoints; i++) {
dot = DotProduct (in->points[i], split->normal);
dot -= split->dist;
dists[i] = dot;
if (dot > ON_EPSILON)
sides[i] = SIDE_FRONT;
else if (dot < -ON_EPSILON)
sides[i] = SIDE_BACK;
else {
sides[i] = SIDE_ON;
}
counts[sides[i]]++;
}
sides[i] = sides[0];
dists[i] = dists[0];
if (keepon && !counts[0] && !counts[1])
return in;
if (!counts[0]) {
FreeWinding (in);
return NULL;
}
if (!counts[1])
return in;
maxpts = in->numpoints + 4; // can't use counts[0] + 2 because
// of fp grouping errors
neww = NewWinding (maxpts);
for (i = 0; i < in->numpoints; i++) {
p1 = in->points[i];
if (sides[i] == SIDE_ON) {
VectorCopy (p1, neww->points[neww->numpoints]);
neww->numpoints++;
continue;
}
if (sides[i] == SIDE_FRONT) {
VectorCopy (p1, neww->points[neww->numpoints]);
neww->numpoints++;
}
if (sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i])
continue;
// generate a split point
p2 = in->points[(i + 1) % in->numpoints];
dot = dists[i] / (dists[i] - dists[i + 1]);
for (j = 0; j < 3; j++) {
// avoid round off error when possible
if (split->normal[j] == 1)
mid[j] = split->dist;
else if (split->normal[j] == -1)
mid[j] = -split->dist;
else
mid[j] = p1[j] + dot * (p2[j] - p1[j]);
}
VectorCopy (mid, neww->points[neww->numpoints]);
neww->numpoints++;
}
if (neww->numpoints > maxpts)
fprintf (stderr, "ClipWinding: points exceeded estimate");
// free the original winding
FreeWinding (in);
return neww;
}
/*
GetNextPortal
Returns the next portal for a thread to work on
Returns the portals from the least complex, so the later ones can reuse
the earlier information.
*/
portal_t *
GetNextPortal (void)
{
int j;
portal_t *p, *tp;
int min;
LOCK;
min = 99999;
p = NULL;
for (j = 0, tp = portals; j < numportals * 2; j++, tp++) {
if (tp->nummightsee < min && tp->status == stat_none) {
min = tp->nummightsee;
p = tp;
}
}
if (p)
p->status = stat_working;
UNLOCK;
return p;
}
void *LeafThread (void *thread)
{
portal_t *portal;
do {
portal = GetNextPortal ();
if (!portal)
break;
PortalFlow (portal);
if (options.verbosity >= 0)
printf ("portal:%4i mightsee:%4i cansee:%4i\n",
(int) (portal - portals),
portal->nummightsee,
portal->numcansee);
} while (1);
return NULL;
}
int
CompressRow (byte *vis, byte *dest)
{
int j;
int rep;
int visrow;
byte *dest_p;
dest_p = dest;
visrow = (portalleafs + 7) >> 3;
for (j = 0; j < visrow; j++) {
*dest_p++ = vis[j];
if (vis[j])
continue;
rep = 1;
for (j++; j < visrow; j++)
if (vis[j] || rep == 255)
break;
else
rep++;
*dest_p++ = rep;
j--;
}
return dest_p - dest;
}
/*
LeafFlow
Builds the entire visibility list for a leaf
*/
void
LeafFlow (int leafnum)
{
int i, j;
leaf_t *leaf;
byte *outbuffer;
byte compressed[MAX_MAP_LEAFS / 8];
int numvis;
byte *dest;
portal_t *portal;
// flow through all portals, collecting visible bits
outbuffer = uncompressed + leafnum * bitbytes;
leaf = &leafs[leafnum];
for (i = 0; i < leaf->numportals; i++) {
portal = leaf->portals[i];
if (portal->status != stat_done)
fprintf (stderr, "portal not done");
for (j = 0; j < bitbytes; j++)
outbuffer[j] |= portal->visbits[j];
}
if (outbuffer[leafnum >> 3] & (1 << (leafnum & 7)))
fprintf (stderr, "Leaf portals saw into leaf");
outbuffer[leafnum >> 3] |= (1 << (leafnum & 7));
numvis = 0;
for (i = 0; i < portalleafs; i++)
if (outbuffer[i >> 3] & (1 << (i & 3)))
numvis++;
// compress the bit string
if (options.verbosity >= 0)
printf ("leaf %4i : %4i visible\n", leafnum, numvis);
totalvis += numvis;
#if 0
i = (portalleafs + 7) >> 3;
memcpy (compressed, outbuffer, i);
#else
i = CompressRow (outbuffer, compressed);
#endif
dest = vismap_p;
vismap_p += i;
if (vismap_p > vismap_end)
fprintf (stderr, "Vismap expansion overflow");
dleafs[leafnum + 1].visofs = dest - vismap; // leaf 0 is a common solid
memcpy (dest, compressed, i);
}
void
CalcPortalVis (void)
{
int i;
// fastvis just uses mightsee for a very loose bound
if (options.minimal) {
for (i = 0; i < numportals * 2; i++) {
portals[i].visbits = portals[i].mightsee;
portals[i].status = stat_done;
}
return;
}
leafon = 0;
#ifdef HAVE_PTHREAD_H
{
pthread_t work_threads[MAX_THREADS];
void *status;
pthread_attr_t attrib;
pthread_mutexattr_t mattrib;
my_mutex = malloc (sizeof (*my_mutex));
if (pthread_mutexattr_init (&mattrib) == -1)
fprintf (stderr, "pthread_mutex_attr_create failed");
//if (pthread_mutexattr_settype (&mattrib, PTHREAD_MUTEX_ADAPTIVE_NP) == -1)
// fprintf (stderr, "pthread_mutexattr_setkind_np failed");
if (pthread_mutex_init (my_mutex, &mattrib) == -1)
fprintf (stderr, "pthread_mutex_init failed");
if (pthread_attr_init (&attrib) == -1)
fprintf (stderr, "pthread_attr_create failed");
if (pthread_attr_setstacksize (&attrib, 0x100000) == -1)
fprintf (stderr, "pthread_attr_setstacksize failed");
for (i = 0; i < options.threads; i++) {
if (pthread_create (&work_threads[i], &attrib, LeafThread,
(void *) i) == -1)
fprintf (stderr, "pthread_create failed");
}
for (i = 0; i < options.threads; i++) {
if (pthread_join (work_threads[i], &status) == -1)
fprintf (stderr, "pthread_join failed");
}
if (pthread_mutex_destroy (my_mutex) == -1)
fprintf (stderr, "pthread_mutex_destroy failed");
}
#else
LeafThread (0);
#endif
if (options.verbosity >= 0) {
printf ("portalcheck: %i portaltest: %i portalpass: %i\n",
c_portalcheck, c_portaltest, c_portalpass);
printf ("c_vistest: %i c_mighttest: %i\n", c_vistest, c_mighttest);
}
}
void
CalcVis (void)
{
int i;
BasePortalVis ();
CalcPortalVis ();
// assemble the leaf vis lists by oring and compressing the portal lists
for (i = 0; i < portalleafs; i++)
LeafFlow (i);
if (options.verbosity >= 0)
printf ("average leafs visible: %i\n", totalvis / portalleafs);
}
qboolean
PlaneCompare (plane_t *p1, plane_t *p2)
{
int i;
if (fabs (p1->dist - p2->dist) > 0.01)
return false;
for (i = 0; i < 3; i++)
if (fabs (p1->normal[i] - p2->normal[i]) > 0.001)
return false;
return true;
}
sep_t *
Findpassages (winding_t *source, winding_t *pass)
{
int i, j, k, l;
plane_t plane;
vec3_t v1, v2;
float d;
double length;
int counts[3];
qboolean fliptest;
sep_t *sep, *list;
list = NULL;
// check all combinations
for (i = 0; i < source->numpoints; i++) {
l = (i + 1) % source->numpoints;
VectorSubtract (source->points[l], source->points[i], v1);
// fing a vertex of pass that makes a plane that puts all of the
// vertexes of pass on the front side and all of the vertexes of
// source on the back side
for (j = 0; j < pass->numpoints; j++) {
VectorSubtract (pass->points[j], source->points[i], v2);
plane.normal[0] = v1[1] * v2[2] - v1[2] * v2[1];
plane.normal[1] = v1[2] * v2[0] - v1[0] * v2[2];
plane.normal[2] = v1[0] * v2[1] - v1[1] * v2[0];
// if points don't make a valid plane, skip it
length = plane.normal[0] * plane.normal[0] +
plane.normal[1] * plane.normal[1] +
plane.normal[2] * plane.normal[2];
if (length < ON_EPSILON)
continue;
length = 1 / sqrt(length);
plane.normal[0] *= length;
plane.normal[1] *= length;
plane.normal[2] *= length;
plane.dist = DotProduct (pass->points[j], plane.normal);
// find out which side of the generated seperating plane has the
// source portal
fliptest = false;
for (k = 0; k < source->numpoints; k++) {
if (k == i || k == l)
continue;
d = DotProduct (source->points[k], plane.normal) - plane.dist;
if (d < -ON_EPSILON) {
// source is on the negative side, so we want all
// pass and target on the positive side
fliptest = false;
break;
} else if (d > ON_EPSILON) {
// source is on the positive side, so we want all
// pass and target on the negative side
fliptest = true;
break;
}
}
if (k == source->numpoints)
continue; // planar with source portal
// flip the normal if the source portal is backwards
if (fliptest) {
VectorSubtract (vec3_origin, plane.normal, plane.normal);
plane.dist = -plane.dist;
}
// if all of the pass portal points are now on the positive side,
// this is the seperating plane
counts[0] = counts[1] = counts[2] = 0;
for (k = 0; k < pass->numpoints; k++) {
if (k == j)
continue;
d = DotProduct (pass->points[k], plane.normal) - plane.dist;
if (d < -ON_EPSILON)
break;
else if (d > ON_EPSILON)
counts[0]++;
else
counts[2]++;
}
if (k != pass->numpoints)
continue; // points on negative side, not a seperating plane
if (!counts[0])
continue; // planar with pass portal
// save this out
count_sep++;
sep = malloc (sizeof (*sep));
sep->next = list;
list = sep;
sep->plane = plane;
}
}
return list;
}
void
CalcPassages (void)
{
int i, j, k;
int count, count2;
leaf_t *leaf;
portal_t *p1, *p2;
sep_t *sep;
passage_t *passages;
if (options.verbosity >= 0)
printf ("building passages...\n");
count = count2 = 0;
for (i = 0; i < portalleafs; i++) {
leaf = &leafs[i];
for (j = 0; j < leaf->numportals; j++) {
p1 = leaf->portals[j];
for (k = 0; k < leaf->numportals; k++) {
if (k == j)
continue;
count++;
p2 = leaf->portals[k];
// definately can't see into a coplanar portal
if (PlaneCompare (&p1->plane, &p2->plane))
continue;
count2++;
sep = Findpassages (p1->winding, p2->winding);
if (!sep) {
count_sep++;
sep = malloc (sizeof (*sep));
sep->next = NULL;
sep->plane = p1->plane;
}
passages = malloc (sizeof (*passages));
passages->planes = sep;
passages->from = p1->leaf;
passages->to = p2->leaf;
passages->next = leaf->passages;
leaf->passages = passages;
}
}
}
if (options.verbosity >= 0) {
printf ("numpassages: %i (%i)\n", count2, count);
printf ("total passages: %i\n", count_sep);
}
}
void
LoadPortals (char *name)
{
int i, j;
portal_t *portal;
leaf_t *leaf;
winding_t *winding;
plane_t plane;
char magic[80];
FILE *f;
int numpoints;
int leafnums[2];
if (!strcmp (name, "-"))
f = stdin;
else {
f = fopen (name, "r");
if (!f) {
printf ("LoadPortals: couldn't read %s\n", name);
printf ("No vising performed.\n");
exit (1);
}
}
if (fscanf (f, "%79s\n%i\n%i\n", magic, &portalleafs, &numportals) != 3)
fprintf (stderr, "LoadPortals: failed to read header");
if (strcmp (magic, PORTALFILE))
fprintf (stderr, "LoadPortals: not a portal file");
if (options.verbosity >= 0) {
printf ("%4i portalleafs\n", portalleafs);
printf ("%4i numportals\n", numportals);
}
bitbytes = ((portalleafs + 63) & ~63) >> 3;
bitlongs = bitbytes / sizeof (long);
// each file portal is split into two memory portals
portals = malloc (2 * numportals * sizeof (portal_t));
memset (portals, 0, 2 * numportals * sizeof (portal_t));
leafs = malloc (portalleafs * sizeof (leaf_t));
memset (leafs, 0, portalleafs * sizeof (leaf_t));
originalvismapsize = portalleafs * ((portalleafs + 7) / 8);
vismap = vismap_p = dvisdata;
vismap_end = vismap + MAX_MAP_VISIBILITY;
for (i = 0, portal = portals; i < numportals; i++) {
if (fscanf (f, "%i %i %i ", &numpoints, &leafnums[0],
&leafnums[1]) != 3)
fprintf (stderr, "LoadPortals: reading portal %i", i);
if (numpoints > MAX_POINTS_ON_WINDING)
fprintf (stderr, "LoadPortals: portal %i has too many points", i);
if ((unsigned) leafnums[0] > portalleafs
|| (unsigned) leafnums[1] > portalleafs)
fprintf (stderr, "LoadPortals: reading portal %i", i);
winding = portal->winding = NewWinding (numpoints);
winding->original = true;
winding->numpoints = numpoints;
for (j = 0; j < numpoints; j++) {
double v[3];
int k;
// scanf into double, then assign to vec_t
if (fscanf (f, "(%lf %lf %lf ) ", &v[0], &v[1], &v[2]) != 3)
fprintf (stderr, "LoadPortals: reading portal %i", i);
for (k = 0; k < 3; k++)
winding->points[j][k] = v[k];
}
fscanf (f, "\n");
// calc plane
PlaneFromWinding (winding, &plane);
// create forward portal
leaf = &leafs[leafnums[0]];
if (leaf->numportals == MAX_PORTALS_ON_LEAF)
fprintf (stderr, "Leaf with too many portals");
leaf->portals[leaf->numportals] = portal;
leaf->numportals++;
portal->winding = winding;
VectorSubtract (vec3_origin, plane.normal, portal->plane.normal);
portal->plane.dist = -plane.dist;
portal->leaf = leafnums[1];
portal++;
// create backwards portal
leaf = &leafs[leafnums[1]];
if (leaf->numportals == MAX_PORTALS_ON_LEAF)
fprintf (stderr, "Leaf with too many portals");
leaf->portals[leaf->numportals] = portal;
leaf->numportals++;
portal->winding = winding;
portal->plane = plane;
portal->leaf = leafnums[0];
portal++;
}
fclose (f);
}
int
main (int argc, char **argv)
{
double start, stop;
dstring_t *portalfile = dstring_new ();
start = Sys_DoubleTime ();
this_program = argv[0];
DecodeArgs (argc, argv);
if (!options.bspfile) {
fprintf (stderr, "%s: no bsp file specified.\n", this_program);
usage (1);
}
COM_StripExtension (options.bspfile, options.bspfile);
COM_DefaultExtension (options.bspfile, ".bsp");
LoadBSPFile (options.bspfile);
portalfile->size = strlen (options.bspfile) + 1;
dstring_adjust (portalfile);
COM_StripExtension (options.bspfile, portalfile->str);
dstring_appendstr (portalfile, ".prt");
LoadPortals (portalfile->str);
uncompressed = malloc (bitbytes * portalleafs);
memset (uncompressed, 0, bitbytes * portalleafs);
CalcVis ();
if (options.verbosity >= 0)
printf ("c_chains: %i\n", c_chains);
visdatasize = vismap_p - dvisdata;
if (options.verbosity >= 0)
printf ("visdatasize:%i compressed from %i\n", visdatasize,
originalvismapsize);
CalcAmbientSounds ();
WriteBSPFile (options.bspfile);
stop = Sys_DoubleTime ();
if (options.verbosity >= 0)
printf ("%5.1f seconds elapsed\n", stop - start);
return 0;
}