quakeforge/libs/models/alias/vulkan_model_alias.c
Bill Currie 54604d9aa2 [util] Make hunk (optionally) thread-safe
For now, the functions check for a null hunk pointer and use the global
hunk (initialized via Memory_Init) if necessary. However, Hunk_Init is
available (and used by Memory_Init) to create a hunk from any arbitrary
memory block. So long as that block is 64-byte aligned, allocations
within the hunk will remain 64-byte aligned.
2021-07-29 11:43:27 +09:00

458 lines
15 KiB
C

/*
vulkan_model_alais.c
Alias model processing for Vulkan
Copyright (C) 2021 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2021/1/24
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "QF/va.h"
#include "QF/modelgen.h"
#include "QF/vid.h"
#include "QF/Vulkan/qf_alias.h"
#include "QF/Vulkan/qf_texture.h"
#include "QF/Vulkan/barrier.h"
#include "QF/Vulkan/buffer.h"
#include "QF/Vulkan/device.h"
#include "QF/Vulkan/debug.h"
#include "QF/Vulkan/image.h"
#include "QF/Vulkan/instance.h"
#include "QF/Vulkan/staging.h"
#include "mod_internal.h"
#include "r_internal.h"
#include "vid_vulkan.h"
static vec3_t vertex_normals[NUMVERTEXNORMALS] = {
#include "anorms.h"
};
static void
skin_clear (int skin_offset, aliashdr_t *hdr, vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
qfv_alias_skin_t *skin = (qfv_alias_skin_t *) ((byte *) hdr + skin_offset);
dfunc->vkDestroyImageView (device->dev, skin->view, 0);
dfunc->vkDestroyImage (device->dev, skin->image, 0);
dfunc->vkFreeMemory (device->dev, skin->memory, 0);
}
static void
vulkan_alias_clear (model_t *m, void *data)
{
vulkan_ctx_t *ctx = data;
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
aliashdr_t *hdr;
qfv_alias_mesh_t *mesh;
QFV_DeviceWaitIdle (device);
m->needload = true; //FIXME is this right?
if (!(hdr = m->aliashdr)) {
hdr = Cache_Get (&m->cache);
}
mesh = (qfv_alias_mesh_t *) ((byte *) hdr + hdr->commands);
dfunc->vkDestroyBuffer (device->dev, mesh->vertex_buffer, 0);
dfunc->vkDestroyBuffer (device->dev, mesh->uv_buffer, 0);
dfunc->vkDestroyBuffer (device->dev, mesh->index_buffer, 0);
dfunc->vkFreeMemory (device->dev, mesh->memory, 0);
__auto_type skins = (maliasskindesc_t *) ((byte *) hdr + hdr->skindesc);
for (int i = 0; i < hdr->mdl.numskins; i++) {
if (skins[i].type == ALIAS_SKIN_GROUP) {
__auto_type group = (maliasskingroup_t *)
((byte *) hdr + skins[i].skin);
for (int j = 0; j < group->numskins; j++) {
skin_clear (group->skindescs[j].skin, hdr, ctx);
}
} else {
skin_clear (skins[i].skin, hdr, ctx);
}
}
}
void *
Vulkan_Mod_LoadSkin (mod_alias_ctx_t *alias_ctx, byte *skinpix, int skinsize,
int snum, int gnum, qboolean group,
maliasskindesc_t *skindesc, vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
aliashdr_t *header = alias_ctx->header;
qfv_alias_skin_t *skin;
byte *tskin;
int w, h;
skin = Hunk_Alloc (0, sizeof (qfv_alias_skin_t));
QuatCopy (vid.palette32 + (TOP_RANGE + 15) * 4, skin->colora);
QuatCopy (vid.palette32 + (BOTTOM_RANGE + 15) * 4, skin->colorb);
skindesc->skin = (byte *) skin - (byte *) header;
//FIXME move all skins into arrays(?)
w = header->mdl.skinwidth;
h = header->mdl.skinheight;
tskin = malloc (2 * skinsize);
memcpy (tskin, skinpix, skinsize);
Mod_FloodFillSkin (tskin, w, h);
int mipLevels = QFV_MipLevels (w, h);
VkExtent3D extent = { w, h, 1 };
skin->image = QFV_CreateImage (device, 0, VK_IMAGE_TYPE_2D,
VK_FORMAT_R8G8B8A8_UNORM, extent,
mipLevels, 4, VK_SAMPLE_COUNT_1_BIT,
VK_IMAGE_USAGE_SAMPLED_BIT
| VK_IMAGE_USAGE_TRANSFER_DST_BIT
| VK_IMAGE_USAGE_TRANSFER_SRC_BIT);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_IMAGE, skin->image,
va (ctx->va_ctx, "image:%s:%d:%d",
alias_ctx->mod->name, snum, gnum));
skin->memory = QFV_AllocImageMemory (device, skin->image,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
0, 0);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DEVICE_MEMORY, skin->memory,
va (ctx->va_ctx, "memory:%s:%d:%d",
alias_ctx->mod->name, snum, gnum));
QFV_BindImageMemory (device, skin->image, skin->memory, 0);
skin->view = QFV_CreateImageView (device, skin->image,
VK_IMAGE_VIEW_TYPE_2D_ARRAY,
VK_FORMAT_R8G8B8A8_UNORM,
VK_IMAGE_ASPECT_COLOR_BIT);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_IMAGE_VIEW, skin->view,
va (ctx->va_ctx, "iview:%s:%d:%d",
alias_ctx->mod->name, snum, gnum));
qfv_stagebuf_t *stage = QFV_CreateStagingBuffer (device, "alias stage",
4 * skinsize * 4,
ctx->cmdpool);
qfv_packet_t *packet = QFV_PacketAcquire (stage);
byte *base_data = QFV_PacketExtend (packet, skinsize * 4);
byte *cola_data = QFV_PacketExtend (packet, skinsize * 4);
byte *colb_data = QFV_PacketExtend (packet, skinsize * 4);
byte *glow_data = QFV_PacketExtend (packet, skinsize * 4);
Mod_CalcFullbright (tskin, tskin + skinsize, skinsize);
Vulkan_ExpandPalette (glow_data, tskin + skinsize, vid.palette, 1,
skinsize);
Mod_ClearFullbright (tskin, tskin, skinsize);
Skin_CalcTopColors (tskin, tskin + skinsize, skinsize);
Vulkan_ExpandPalette (cola_data, tskin + skinsize, vid.palette, 1,
skinsize);
Skin_ClearTopColors (tskin, tskin, skinsize);
Skin_CalcBottomColors (tskin, tskin + skinsize, skinsize);
Vulkan_ExpandPalette (colb_data, tskin + skinsize, vid.palette, 1,
skinsize);
Skin_ClearBottomColors (tskin, tskin, skinsize);
Vulkan_ExpandPalette (base_data, tskin, vid.palette, 1, skinsize);
qfv_imagebarrier_t ib = imageBarriers[qfv_LT_Undefined_to_TransferDst];
ib.barrier.image = skin->image;
ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
ib.barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS;
dfunc->vkCmdPipelineBarrier (packet->cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0,
1, &ib.barrier);
VkBufferImageCopy copy = {
packet->offset, 0, 0,
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 4},
{0, 0, 0}, {w, h, 1},
};
dfunc->vkCmdCopyBufferToImage (packet->cmd, packet->stage->buffer,
skin->image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &copy);
if (mipLevels == 1) {
ib = imageBarriers[qfv_LT_TransferDst_to_ShaderReadOnly];
ib.barrier.image = skin->image;
ib.barrier.subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
ib.barrier.subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS;
dfunc->vkCmdPipelineBarrier (packet->cmd, ib.srcStages, ib.dstStages,
0, 0, 0, 0, 0,
1, &ib.barrier);
} else {
QFV_GenerateMipMaps (device, packet->cmd, skin->image,
mipLevels, w, h, 4);
}
QFV_PacketSubmit (packet);
QFV_DestroyStagingBuffer (stage);
free (tskin);
return skinpix + skinsize;
}
void
Vulkan_Mod_FinalizeAliasModel (mod_alias_ctx_t *alias_ctx, vulkan_ctx_t *ctx)
{
alias_ctx->mod->clear = vulkan_alias_clear;
alias_ctx->mod->data = ctx;
}
void
Vulkan_Mod_LoadExternalSkins (mod_alias_ctx_t *alias_ctx, vulkan_ctx_t *ctx)
{
}
static size_t
get_buffer_size (qfv_device_t *device, VkBuffer buffer)
{
qfv_devfuncs_t *dfunc = device->funcs;
size_t size;
size_t align;
VkMemoryRequirements requirements;
dfunc->vkGetBufferMemoryRequirements (device->dev, buffer, &requirements);
size = requirements.size;
align = requirements.alignment - 1;
size = (size + align) & ~(align);
return size;
}
void
Vulkan_Mod_MakeAliasModelDisplayLists (mod_alias_ctx_t *alias_ctx, void *_m,
int _s, int extra, vulkan_ctx_t *ctx)
{
aliashdr_t *header = alias_ctx->header;
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
aliasvrt_t *verts;
aliasuv_t *uv;
trivertx_t *pv;
int *indexmap;
uint32_t *indices;
int numverts;
int numtris;
int i, j;
int pose;
vec3_t pos;
if (header->mdl.ident == HEADER_MDL16)
VectorScale (header->mdl.scale, 1/256.0, header->mdl.scale);
numverts = header->mdl.numverts;
numtris = header->mdl.numtris;
// initialize indexmap to -1 (unduplicated). any other value indicates
// both that the vertex has been duplicated and the index of the
// duplicate vertex.
indexmap = malloc (numverts * sizeof (int));
memset (indexmap, -1, numverts * sizeof (int));
// check for onseam verts, and duplicate any that are associated with
// back-facing triangles
for (i = 0; i < numtris; i++) {
for (j = 0; j < 3; j++) {
int vind = alias_ctx->triangles.a[i].vertindex[j];
if (alias_ctx->stverts.a[vind].onseam
&& !alias_ctx->triangles.a[i].facesfront) {
// duplicate the vertex if it has not alreaddy been
// duplicated
if (indexmap[vind] == -1) {
indexmap[vind] = numverts++;
}
}
}
}
// we now know exactly how many vertices we need, so built the vertex
// and index data arrays
// The layout is:
// vbuf:{vertex, normal} * (numposes * numverts)
// uvbuf:{uv} * (numverts)
// ibuf:{index} * (numtris * 3)
// numverts includes the duplicated seam vertices.
// The vertex buffer will be bound with various offsets based on the
// current and previous pose, uvbuff "statically" bound as uvs are not
// animated by pose, and the same for ibuf: indices will never change for
// the mesh
size_t vert_count = numverts * header->numposes;
size_t vert_size = vert_count * sizeof (aliasvrt_t);
size_t uv_size = numverts * sizeof (aliasuv_t);
size_t ind_size = 3 * numtris * sizeof (uint32_t);
VkBuffer vbuff = QFV_CreateBuffer (device, vert_size,
VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
VkBuffer uvbuff = QFV_CreateBuffer (device, uv_size,
VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
VkBuffer ibuff = QFV_CreateBuffer (device, ind_size,
VK_BUFFER_USAGE_TRANSFER_DST_BIT
| VK_BUFFER_USAGE_INDEX_BUFFER_BIT);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_BUFFER, vbuff,
va (ctx->va_ctx, "buffer:alias:vertex:%s",
alias_ctx->mod->name));
QFV_duSetObjectName (device, VK_OBJECT_TYPE_BUFFER, uvbuff,
va (ctx->va_ctx, "buffer:alias:uv:%s",
alias_ctx->mod->name));
QFV_duSetObjectName (device, VK_OBJECT_TYPE_BUFFER, ibuff,
va (ctx->va_ctx, "buffer:alias:index:%s",
alias_ctx->mod->name));
size_t voffs = 0;
size_t uvoffs = voffs + get_buffer_size (device, vbuff);
size_t ioffs = uvoffs + get_buffer_size (device, uvbuff);
size_t buff_size = ioffs + get_buffer_size (device, ibuff);
VkDeviceMemory mem;
mem = QFV_AllocBufferMemory (device, vbuff,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
buff_size, 0);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DEVICE_MEMORY, mem,
va (ctx->va_ctx, "memory:alias:vuvi:%s",
alias_ctx->mod->name));
QFV_BindBufferMemory (device, vbuff, mem, voffs);
QFV_BindBufferMemory (device, uvbuff, mem, uvoffs);
QFV_BindBufferMemory (device, ibuff, mem, ioffs);
qfv_stagebuf_t *stage = QFV_CreateStagingBuffer (device,
va (ctx->va_ctx,
"alias:%s",
alias_ctx->mod->name),
buff_size, ctx->cmdpool);
qfv_packet_t *packet = QFV_PacketAcquire (stage);
verts = QFV_PacketExtend (packet, vert_size);
uv = QFV_PacketExtend (packet, uv_size);
indices = QFV_PacketExtend (packet, ind_size);
// populate the uvs, duplicating and shifting any that are on the seam
// and associated with back-facing triangles (marked by non-negative
// indexmap entry).
// the s coordinate is shifted right by half the skin width.
for (i = 0; i < header->mdl.numverts; i++) {
int vind = indexmap[i];
uv[i].u = (float) alias_ctx->stverts.a[i].s / header->mdl.skinwidth;
uv[i].v = (float) alias_ctx->stverts.a[i].t / header->mdl.skinheight;
if (vind != -1) {
uv[vind] = uv[i];
uv[vind].u += 0.5;
}
}
// poputlate the vertex position and normal data, duplicating for
// back-facing on-seam verts (indicated by non-negative indexmap entry)
for (i = 0, pose = 0; i < header->numposes; i++, pose += numverts) {
for (j = 0; j < header->mdl.numverts; j++) {
pv = &alias_ctx->poseverts.a[i][j];
if (extra) {
VectorMultAdd (pv[header->mdl.numverts].v, 256, pv->v, pos);
} else {
VectorCopy (pv->v, pos);
}
VectorCompMultAdd (header->mdl.scale_origin, header->mdl.scale,
pos, verts[pose + j].vertex);
verts[pose + j].vertex[3] = 1;
VectorCopy (vertex_normals[pv->lightnormalindex],
verts[pose + j].normal);
verts[pose + j].normal[3] = 0;
// duplicate on-seam vert associated with back-facing triangle
if (indexmap[j] != -1) {
verts[pose + indexmap[j]] = verts[pose + j];
}
}
}
// now build the indices for DrawElements
for (i = 0; i < numtris; i++) {
for (j = 0; j < 3; j++) {
int vind = alias_ctx->triangles.a[i].vertindex[j];
if (alias_ctx->stverts.a[vind].onseam
&& !alias_ctx->triangles.a[i].facesfront) {
vind = indexmap[vind];
}
indices[3 * i + j] = vind;
}
}
// finished with indexmap
free (indexmap);
header->poseverts = numverts;
qfv_bufferbarrier_t bb = bufferBarriers[qfv_BB_Unknown_to_TransferWrite];
VkBufferMemoryBarrier wr_barriers[] = {
bb.barrier, bb.barrier, bb.barrier,
};
wr_barriers[0].buffer = vbuff;
wr_barriers[0].size = vert_size;
wr_barriers[1].buffer = uvbuff;
wr_barriers[1].size = uv_size;
wr_barriers[2].buffer = ibuff;
wr_barriers[2].size = ind_size;
dfunc->vkCmdPipelineBarrier (packet->cmd, bb.srcStages, bb.dstStages,
0, 0, 0, 3, wr_barriers, 0, 0);
VkBufferCopy copy_region[] = {
{ packet->offset, 0, vert_size },
{ packet->offset + vert_size, 0, uv_size },
{ packet->offset + vert_size + uv_size, 0, ind_size },
};
dfunc->vkCmdCopyBuffer (packet->cmd, stage->buffer,
vbuff, 1, &copy_region[0]);
dfunc->vkCmdCopyBuffer (packet->cmd, stage->buffer,
uvbuff, 1, &copy_region[1]);
dfunc->vkCmdCopyBuffer (packet->cmd, stage->buffer,
ibuff, 1, &copy_region[2]);
// both qfv_BB_TransferWrite_to_VertexAttrRead and
// qfv_BB_TransferWrite_to_IndexRead have the same stage flags
bb = bufferBarriers[qfv_BB_TransferWrite_to_VertexAttrRead];
VkBufferMemoryBarrier rd_barriers[] = {
bufferBarriers[qfv_BB_TransferWrite_to_VertexAttrRead].barrier,
bufferBarriers[qfv_BB_TransferWrite_to_VertexAttrRead].barrier,
bufferBarriers[qfv_BB_TransferWrite_to_IndexRead].barrier,
};
rd_barriers[0].buffer = vbuff;
rd_barriers[0].size = vert_size;
rd_barriers[1].buffer = uvbuff;
rd_barriers[1].size = uv_size;
rd_barriers[2].buffer = ibuff;
rd_barriers[2].size = ind_size;
dfunc->vkCmdPipelineBarrier (packet->cmd, bb.srcStages, bb.dstStages,
0, 0, 0, 3, rd_barriers, 0, 0);
QFV_PacketSubmit (packet);
QFV_DestroyStagingBuffer (stage);
qfv_alias_mesh_t *mesh = Hunk_Alloc (0, sizeof (qfv_alias_mesh_t));
mesh->vertex_buffer = vbuff;
mesh->uv_buffer = uvbuff;
mesh->index_buffer = ibuff;
mesh->memory = mem;
header->commands = (byte *) mesh - (byte *) header;
}