quakeforge/tools/qfcc/source/expr_compound.c
Bill Currie 1487fa6b50 [qfcc] Implement some basics for the vector types
They're now properly part of the type system and can be used for
declaring variables, initialized (using {} block initializers), operated
on (=, *, + tested) though much work needs to be done on binary
expressions, and indexed. So far, only ivec2 has been tested.
2022-02-04 00:25:31 +09:00

227 lines
5.9 KiB
C

/*
expr_compound.c
compound intializer expression construction and manipulations
Copyright (C) 2020 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2020/03/11
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "QF/alloc.h"
#include "QF/dstring.h"
#include "QF/mathlib.h"
#include "QF/sys.h"
#include "QF/va.h"
#include "tools/qfcc/include/diagnostic.h"
#include "tools/qfcc/include/expr.h"
#include "tools/qfcc/include/options.h"
#include "tools/qfcc/include/symtab.h"
#include "tools/qfcc/include/type.h"
static element_t *elements_freelist;
element_t *
new_element (expr_t *expr, symbol_t *symbol)
{
element_t *element;
ALLOC (256, element_t, elements, element);
element->expr = expr;
element->symbol = symbol;
return element;
}
static element_t *
append_init_element (element_chain_t *element_chain, element_t *element)
{
element->next = 0;
*element_chain->tail = element;
element_chain->tail = &element->next;
return element;
}
expr_t *
new_compound_init (void)
{
expr_t *c = new_expr ();
c->type = ex_compound;
c->e.compound.head = 0;
c->e.compound.tail = &c->e.compound.head;
return c;
}
static element_t *
build_array_element_chain(element_chain_t *element_chain,
int array_size, type_t *array_type,
element_t *ele,
int base_offset)
{
for (int i = 0; i < array_size; i++) {
int offset = base_offset + i * type_size (array_type);
if (ele && ele->expr && ele->expr->type == ex_compound) {
build_element_chain (element_chain, array_type,
ele->expr, offset);
} else {
element_t *element = new_element (0, 0);
element->type = array_type;
element->offset = offset;
element->expr = ele ? ele->expr : 0; // null -> nil
append_init_element (element_chain, element);
}
if (ele) {
ele = ele->next;
}
}
return ele;
}
void
build_element_chain (element_chain_t *element_chain, const type_t *type,
expr_t *eles, int base_offset)
{
element_t *ele = eles->e.compound.head;
type = unalias_type (type);
if (is_array (type)) {
type_t *array_type = type->t.array.type;
int array_size = type->t.array.size;
ele = build_array_element_chain (element_chain, array_size, array_type,
ele, base_offset);
} else if (is_struct (type) || (is_nonscalar (type) && type->t.symtab)) {
symtab_t *symtab = type->t.symtab;
symbol_t *field;
for (field = symtab->symbols; field; field = field->next) {
int offset = base_offset + field->s.offset;
if (field->sy_type != sy_var
|| field->visibility == vis_anonymous) {
continue;
}
if (ele && ele->expr && ele->expr->type == ex_compound) {
build_element_chain (element_chain, field->type,
ele->expr, offset);
} else {
element_t *element = new_element (0, 0);
element->type = field->type;
element->offset = offset;
element->expr = ele ? ele->expr : 0; // null -> nil
append_init_element (element_chain, element);
}
if (ele) {
ele = ele->next;
}
}
} else if (is_nonscalar (type)) {
// vector type with unnamed components
int vec_width = type_width (type);
type_t *vec_type = ev_types[type->type];
ele = build_array_element_chain (element_chain, vec_width, vec_type,
ele, base_offset);
} else {
error (eles, "invalid initializer");
}
if (ele && ele->next && options.warnings.initializer) {
warning (eles, "excessive elements in initializer");
}
}
void free_element_chain (element_chain_t *element_chain)
{
*element_chain->tail = elements_freelist;
elements_freelist = element_chain->head;
element_chain->head = 0;
element_chain->tail = &element_chain->head;
}
expr_t *
append_element (expr_t *compound, element_t *element)
{
if (compound->type != ex_compound) {
internal_error (compound, "not a compound expression");
}
if (!element || (element->expr && element->expr->type == ex_error)) {
return compound;
}
if (element->next) {
internal_error (compound, "append_element: element loop detected");
}
append_init_element (&compound->e.compound, element);
return compound;
}
void
assign_elements (expr_t *local_expr, expr_t *init,
element_chain_t *element_chain)
{
element_t *element;
for (element = element_chain->head; element; element = element->next) {
int offset = element->offset;
type_t *type = element->type;
expr_t *alias = new_offset_alias_expr (type, init, offset);
expr_t *c;
if (element->expr) {
c = constant_expr (element->expr);
} else {
c = new_nil_expr ();
}
if (c->type == ex_nil) {
c = convert_nil (c, type);
}
append_expr (local_expr, assign_expr (alias, c));
}
}
expr_t *
initialized_temp_expr (const type_t *type, expr_t *compound)
{
type = unalias_type (type);
element_chain_t element_chain;
expr_t *temp = new_temp_def_expr (type);
expr_t *block = new_block_expr ();
element_chain.head = 0;
element_chain.tail = &element_chain.head;
build_element_chain (&element_chain, type, compound, 0);
assign_elements (block, temp, &element_chain);
block->e.block.result = temp;
free_element_chain (&element_chain);
return block;
}