quakeforge/libs/video/renderer/vulkan/image.c
Bill Currie 9d7cad420d [vulkan] Add a function to translate QFFormat to VkFormat
It's not great, but it does produce reasonable results for the formats
supported by QF's image system.
2022-05-04 13:57:02 +09:00

289 lines
7.9 KiB
C

/*
image.c
Vulkan image functions
Copyright (C) 1996-1997 Id Software, Inc.
Copyright (C) 2020 Bill Currie <bill@taniwha.org>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "QF/mathlib.h"
#include "QF/Vulkan/qf_vid.h"
#include "QF/Vulkan/barrier.h"
#include "QF/Vulkan/device.h"
#include "QF/Vulkan/image.h"
#include "QF/Vulkan/instance.h"
VkImage
QFV_CreateImage (qfv_device_t *device, int cubemap,
VkImageType type,
VkFormat format,
VkExtent3D size,
uint32_t num_mipmaps,
uint32_t num_layers,
VkSampleCountFlags samples,
VkImageUsageFlags usage_scenarios)
{
VkDevice dev = device->dev;
qfv_devfuncs_t *dfunc = device->funcs;
VkImageCreateInfo createInfo = {
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, 0,
cubemap ? VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT : 0,
type, format, size, num_mipmaps,
cubemap ? 6 * num_layers : num_layers,
samples,
VK_IMAGE_TILING_OPTIMAL,
usage_scenarios,
VK_SHARING_MODE_EXCLUSIVE,
0, 0,
VK_IMAGE_LAYOUT_UNDEFINED,
};
VkImage image;
dfunc->vkCreateImage (dev, &createInfo, 0, &image);
return image;
}
VkDeviceMemory
QFV_AllocImageMemory (qfv_device_t *device,
VkImage image, VkMemoryPropertyFlags properties,
VkDeviceSize size, VkDeviceSize offset)
{
VkDevice dev = device->dev;
qfv_physdev_t *physdev = device->physDev;
VkPhysicalDeviceMemoryProperties *memprops = &physdev->memory_properties;
qfv_devfuncs_t *dfunc = device->funcs;
VkMemoryRequirements requirements;
dfunc->vkGetImageMemoryRequirements (dev, image, &requirements);
size = max (size, offset + requirements.size);
VkDeviceMemory object = 0;
for (uint32_t type = 0; type < memprops->memoryTypeCount; type++) {
if ((requirements.memoryTypeBits & (1 << type))
&& ((memprops->memoryTypes[type].propertyFlags & properties)
== properties)) {
VkMemoryAllocateInfo allocate_info = {
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, 0,
size, type
};
VkResult res = dfunc->vkAllocateMemory (dev, &allocate_info,
0, &object);
if (res == VK_SUCCESS) {
break;
}
}
}
return object;
}
int
QFV_BindImageMemory (qfv_device_t *device,
VkImage image, VkDeviceMemory object, VkDeviceSize offset)
{
VkDevice dev = device->dev;
qfv_devfuncs_t *dfunc = device->funcs;
VkResult res = dfunc->vkBindImageMemory (dev, image, object, offset);
return res == VK_SUCCESS;
}
qfv_imagebarrierset_t *
QFV_CreateImageTransitionSet (qfv_imagetransition_t *transitions,
int numTransitions)
{
qfv_imagebarrierset_t *barrierset;
barrierset = DARRAY_ALLOCFIXED (*barrierset, numTransitions, malloc);
for (int i = 0; i < numTransitions; i++) {
barrierset->a[i].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrierset->a[i].pNext = 0;
barrierset->a[i].srcAccessMask = transitions[i].srcAccess;
barrierset->a[i].dstAccessMask = transitions[i].dstAccess;
barrierset->a[i].oldLayout = transitions[i].oldLayout;
barrierset->a[i].newLayout = transitions[i].newLayout;
barrierset->a[i].srcQueueFamilyIndex = transitions[i].srcQueueFamily;
barrierset->a[i].dstQueueFamilyIndex = transitions[i].dstQueueFamily;
barrierset->a[i].image = transitions[i].image;
barrierset->a[i].subresourceRange.aspectMask = transitions[i].aspect;
barrierset->a[i].subresourceRange.baseMipLevel = 0;
barrierset->a[i].subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS;
barrierset->a[i].subresourceRange.baseArrayLayer = 0;
barrierset->a[i].subresourceRange.layerCount
= VK_REMAINING_ARRAY_LAYERS;
}
return barrierset;
}
VkImageView
QFV_CreateImageView (qfv_device_t *device, VkImage image,
VkImageViewType type, VkFormat format,
VkImageAspectFlags aspect)
{
VkDevice dev = device->dev;
qfv_devfuncs_t *dfunc = device->funcs;
VkImageViewCreateInfo createInfo = {
VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, 0,
0,
image, type, format,
{
VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY,
},
{
aspect,
0, VK_REMAINING_MIP_LEVELS,
0, VK_REMAINING_ARRAY_LAYERS,
}
};
VkImageView view;
dfunc->vkCreateImageView (dev, &createInfo, 0, &view);
return view;
}
size_t
QFV_GetImageSize (qfv_device_t *device, VkImage image)
{
qfv_devfuncs_t *dfunc = device->funcs;
size_t size;
size_t align;
VkMemoryRequirements requirements;
dfunc->vkGetImageMemoryRequirements (device->dev, image, &requirements);
size = requirements.size;
align = requirements.alignment - 1;
size = (size + align) & ~(align);
return size;
}
void
QFV_GenerateMipMaps (qfv_device_t *device, VkCommandBuffer cmd,
VkImage image, unsigned mips,
unsigned width, unsigned height, unsigned layers)
{
qfv_devfuncs_t *dfunc = device->funcs;
qfv_imagebarrier_t pre=imageBarriers[qfv_LT_TransferDst_to_TransferSrc];
qfv_imagebarrier_t pst=imageBarriers[qfv_LT_TransferSrc_to_ShaderReadOnly];
qfv_imagebarrier_t fnl=imageBarriers[qfv_LT_TransferDst_to_ShaderReadOnly];
pre.barrier.image = image;
pre.barrier.subresourceRange.layerCount = layers;
pst.barrier.image = image;
pst.barrier.subresourceRange.layerCount = layers;
fnl.barrier.image = image;
fnl.barrier.subresourceRange.layerCount = layers;
VkImageBlit blit = {
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, layers},
{{0, 0, 0}, {width, height, 1}},
{VK_IMAGE_ASPECT_COLOR_BIT, 1, 0, layers},
{{0, 0, 0}, {max (width >> 1, 1), max (height >> 1, 1), 1}},
};
while (--mips > 0) {
dfunc->vkCmdPipelineBarrier (cmd, pre.srcStages, pre.dstStages, 0,
0, 0, 0, 0,
1, &pre.barrier);
dfunc->vkCmdBlitImage (cmd,
image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, &blit, VK_FILTER_LINEAR);
dfunc->vkCmdPipelineBarrier (cmd, pst.srcStages, pst.dstStages, 0,
0, 0, 0, 0,
1, &pst.barrier);
blit.srcSubresource.mipLevel++;
blit.srcOffsets[1].x = blit.dstOffsets[1].x;
blit.srcOffsets[1].y = blit.dstOffsets[1].y;
blit.dstSubresource.mipLevel++;
blit.dstOffsets[1].x = max (blit.dstOffsets[1].x >> 1, 1);
blit.dstOffsets[1].y = max (blit.dstOffsets[1].y >> 1, 1);
pre.barrier.subresourceRange.baseMipLevel++;
pst.barrier.subresourceRange.baseMipLevel++;
fnl.barrier.subresourceRange.baseMipLevel++;
}
dfunc->vkCmdPipelineBarrier (cmd, fnl.srcStages, fnl.dstStages, 0,
0, 0, 0, 0,
1, &fnl.barrier);
}
static int
ilog2 (unsigned x)
{
unsigned o = x;
if (x > 0x7fffffff) {
// avoid overflow
return 31;
}
x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
x++;
int y = 0;
y |= ((x & 0xffff0000) != 0) << 4;
y |= ((x & 0xff00ff00) != 0) << 3;
y |= ((x & 0xf0f0f0f0) != 0) << 2;
y |= ((x & 0xcccccccc) != 0) << 1;
y |= ((x & 0xaaaaaaaa) != 0) << 0;
return y - ((o & (x - 1)) != 0);
}
int
QFV_MipLevels (int width, int height)
{
return ilog2 (max (width, height)) + 1;
}
VkFormat
QFV_ImageFormat (QFFormat format)
{
switch (format) {
case tex_palette:
return VK_FORMAT_R8_UINT;
case tex_l:
case tex_a:
return VK_FORMAT_R8_UNORM;
case tex_la:
return VK_FORMAT_R8G8_UNORM;
case tex_rgb:
return VK_FORMAT_R8G8B8_UNORM; // SRGB?
case tex_rgba:
return VK_FORMAT_R8G8B8A8_UNORM;// SRGB?
case tex_frgba:
return VK_FORMAT_R32G32B32A32_SFLOAT;
}
return VK_FORMAT_R8_SRGB;
}