quakeforge/libs/video/renderer/sw/sw_rmain.c
Bill Currie bc1b483525 Nuke the rcsid stuff.
It's pretty useless in git.
2012-04-22 10:56:32 +09:00

1148 lines
29 KiB
C

/*
r_main.c
(description)
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#ifdef HAVE_STDLIB_H
# include <stdlib.h>
#endif
#include <math.h>
#include "QF/cmd.h"
#include "QF/cvar.h"
#include "QF/locs.h"
#include "QF/mathlib.h"
#include "QF/render.h"
#include "QF/screen.h"
#include "QF/sound.h"
#include "QF/sys.h"
#include "compat.h"
#include "mod_internal.h"
#include "r_internal.h"
#include "vid_internal.h"
#ifdef PIC
# undef USE_INTEL_ASM //XXX asm pic hack
#endif
void *colormap;
static vec3_t viewlightvec;
static alight_t r_viewlighting = { 128, 192, viewlightvec };
int r_numallocatededges;
qboolean r_drawpolys;
qboolean r_drawculledpolys;
qboolean r_worldpolysbacktofront;
qboolean r_recursiveaffinetriangles = true;
int r_pixbytes = 1;
float r_aliasuvscale = 1.0;
int r_outofsurfaces;
int r_outofedges;
qboolean r_dowarp, r_dowarpold, r_viewchanged;
int c_surf;
int r_maxsurfsseen, r_maxedgesseen;
static int r_cnumsurfs;
static qboolean r_surfsonstack;
int r_clipflags;
byte *r_warpbuffer;
static byte *r_stack_start;
// screen size info
float xcenter, ycenter;
float xscale, yscale;
float xscaleinv, yscaleinv;
float xscaleshrink, yscaleshrink;
float aliasxscale, aliasyscale, aliasxcenter, aliasycenter;
int screenwidth;
float pixelAspect;
static float screenAspect;
static float verticalFieldOfView;
static float xOrigin, yOrigin;
plane_t screenedge[4];
// refresh flags
int r_polycount;
int r_drawnpolycount;
int *pfrustum_indexes[4];
int r_frustum_indexes[4 * 6];
float r_aliastransition, r_resfudge;
static float dp_time1, dp_time2, db_time1, db_time2, rw_time1, rw_time2;
static float se_time1, se_time2, de_time1, de_time2, dv_time1, dv_time2;
void
sw_R_Init (void)
{
int dummy;
// get stack position so we can guess if we are going to overflow
r_stack_start = (byte *) & dummy;
R_Init_Cvars ();
R_Particles_Init_Cvars ();
Draw_Init ();
SCR_Init ();
R_SetFPCW ();
#ifdef USE_INTEL_ASM
R_InitVars ();
#endif
R_InitTurb ();
Cmd_AddCommand ("timerefresh", R_TimeRefresh_f, "Tests the current "
"refresh rate for the current location");
Cmd_AddCommand ("pointfile", R_ReadPointFile_f, "Load a pointfile to "
"determine map leaks");
Cmd_AddCommand ("loadsky", R_LoadSky_f, "Load a skybox");
Cvar_SetValue (r_maxedges, (float) NUMSTACKEDGES);
Cvar_SetValue (r_maxsurfs, (float) NUMSTACKSURFACES);
view_clipplanes[0].leftedge = true;
view_clipplanes[1].rightedge = true;
view_clipplanes[1].leftedge = view_clipplanes[2].leftedge =
view_clipplanes[3].leftedge = false;
view_clipplanes[0].rightedge = view_clipplanes[2].rightedge =
view_clipplanes[3].rightedge = false;
r_refdef.xOrigin = XCENTERING;
r_refdef.yOrigin = YCENTERING;
// TODO: collect 386-specific code in one place
#ifdef USE_INTEL_ASM
Sys_MakeCodeWriteable ((long) R_EdgeCodeStart,
(long) R_EdgeCodeEnd - (long) R_EdgeCodeStart);
#endif // USE_INTEL_ASM
D_Init ();
Skin_Init ();
}
void
R_NewMap (model_t *worldmodel, struct model_s **models, int num_models)
{
int i;
memset (&r_worldentity, 0, sizeof (r_worldentity));
r_worldentity.model = worldmodel;
R_FreeAllEntities ();
// clear out efrags in case the level hasn't been reloaded
// FIXME: is this one short?
for (i = 0; i < r_worldentity.model->numleafs; i++)
r_worldentity.model->leafs[i].efrags = NULL;
if (worldmodel->skytexture)
R_InitSky (worldmodel->skytexture);
// Force a vis update
r_viewleaf = NULL;
R_MarkLeaves ();
R_ClearParticles ();
r_cnumsurfs = r_maxsurfs->int_val;
if (r_cnumsurfs <= MINSURFACES)
r_cnumsurfs = MINSURFACES;
if (r_cnumsurfs > NUMSTACKSURFACES) {
surfaces = Hunk_AllocName (r_cnumsurfs * sizeof (surf_t), "surfaces");
surface_p = surfaces;
surf_max = &surfaces[r_cnumsurfs];
r_surfsonstack = false;
// surface 0 doesn't really exist; it's just a dummy because index 0
// is used to indicate no edge attached to surface
surfaces--;
R_SurfacePatch ();
} else {
r_surfsonstack = true;
}
r_maxedgesseen = 0;
r_maxsurfsseen = 0;
r_numallocatededges = r_maxedges->int_val;
if (r_numallocatededges < MINEDGES)
r_numallocatededges = MINEDGES;
if (r_numallocatededges <= NUMSTACKEDGES) {
auxedges = NULL;
} else {
auxedges = Hunk_AllocName (r_numallocatededges * sizeof (edge_t),
"edges");
}
r_dowarpold = false;
r_viewchanged = false;
}
/*
R_ViewChanged
Called every time the vid structure or r_refdef changes.
Guaranteed to be called before the first refresh
*/
void
R_ViewChanged (float aspect)
{
int i;
float res_scale;
r_viewchanged = true;
r_refdef.horizontalFieldOfView = 2.0 * tan (r_refdef.fov_x / 360 * M_PI);
r_refdef.fvrectx = (float) r_refdef.vrect.x;
r_refdef.fvrectx_adj = (float) r_refdef.vrect.x - 0.5;
r_refdef.vrect_x_adj_shift20 = (r_refdef.vrect.x << 20) + (1 << 19) - 1;
r_refdef.fvrecty = (float) r_refdef.vrect.y;
r_refdef.fvrecty_adj = (float) r_refdef.vrect.y - 0.5;
r_refdef.vrectright = r_refdef.vrect.x + r_refdef.vrect.width;
r_refdef.vrectright_adj_shift20 =
(r_refdef.vrectright << 20) + (1 << 19) - 1;
r_refdef.fvrectright = (float) r_refdef.vrectright;
r_refdef.fvrectright_adj = (float) r_refdef.vrectright - 0.5;
r_refdef.vrectrightedge = (float) r_refdef.vrectright - 0.99;
r_refdef.vrectbottom = r_refdef.vrect.y + r_refdef.vrect.height;
r_refdef.fvrectbottom = (float) r_refdef.vrectbottom;
r_refdef.fvrectbottom_adj = (float) r_refdef.vrectbottom - 0.5;
r_refdef.aliasvrect.x = (int) (r_refdef.vrect.x * r_aliasuvscale);
r_refdef.aliasvrect.y = (int) (r_refdef.vrect.y * r_aliasuvscale);
r_refdef.aliasvrect.width = (int) (r_refdef.vrect.width * r_aliasuvscale);
r_refdef.aliasvrect.height = (int) (r_refdef.vrect.height *
r_aliasuvscale);
r_refdef.aliasvrectright = r_refdef.aliasvrect.x +
r_refdef.aliasvrect.width;
r_refdef.aliasvrectbottom = r_refdef.aliasvrect.y +
r_refdef.aliasvrect.height;
pixelAspect = vid.aspect;
xOrigin = r_refdef.xOrigin;
yOrigin = r_refdef.yOrigin;
screenAspect = r_refdef.vrect.width * pixelAspect / r_refdef.vrect.height;
// 320*200 1.0 pixelAspect = 1.6 screenAspect
// 320*240 1.0 pixelAspect = 1.3333 screenAspect
// proper 320*200 pixelAspect = 0.8333333
verticalFieldOfView = r_refdef.horizontalFieldOfView / screenAspect;
// values for perspective projection
// if math were exact, the values would range from 0.5 to to range+0.5
// hopefully they wll be in the 0.000001 to range+.999999 and truncate
// the polygon rasterization will never render in the first row or column
// but will definately render in the [range] row and column, so adjust the
// buffer origin to get an exact edge to edge fill
xcenter = ((float) r_refdef.vrect.width * XCENTERING) +
r_refdef.vrect.x - 0.5;
aliasxcenter = xcenter * r_aliasuvscale;
ycenter = ((float) r_refdef.vrect.height * YCENTERING) +
r_refdef.vrect.y - 0.5;
aliasycenter = ycenter * r_aliasuvscale;
xscale = r_refdef.vrect.width / r_refdef.horizontalFieldOfView;
aliasxscale = xscale * r_aliasuvscale;
xscaleinv = 1.0 / xscale;
yscale = xscale * pixelAspect;
aliasyscale = yscale * r_aliasuvscale;
yscaleinv = 1.0 / yscale;
xscaleshrink = (r_refdef.vrect.width - 6) / r_refdef.horizontalFieldOfView;
yscaleshrink = xscaleshrink * pixelAspect;
// left side clip
screenedge[0].normal[0] = -1.0 / (xOrigin *
r_refdef.horizontalFieldOfView);
screenedge[0].normal[1] = 0;
screenedge[0].normal[2] = 1;
screenedge[0].type = PLANE_ANYZ;
// right side clip
screenedge[1].normal[0] = 1.0 / ((1.0 - xOrigin) *
r_refdef.horizontalFieldOfView);
screenedge[1].normal[1] = 0;
screenedge[1].normal[2] = 1;
screenedge[1].type = PLANE_ANYZ;
// top side clip
screenedge[2].normal[0] = 0;
screenedge[2].normal[1] = -1.0 / (yOrigin * verticalFieldOfView);
screenedge[2].normal[2] = 1;
screenedge[2].type = PLANE_ANYZ;
// bottom side clip
screenedge[3].normal[0] = 0;
screenedge[3].normal[1] = 1.0 / ((1.0 - yOrigin) * verticalFieldOfView);
screenedge[3].normal[2] = 1;
screenedge[3].type = PLANE_ANYZ;
for (i = 0; i < 4; i++)
VectorNormalize (screenedge[i].normal);
res_scale = sqrt ((double) (r_refdef.vrect.width * r_refdef.vrect.height) /
(320.0 * 152.0)) * (2.0 /
r_refdef.horizontalFieldOfView);
r_aliastransition = r_aliastransbase->value * res_scale;
r_resfudge = r_aliastransadj->value * res_scale;
// TODO: collect 386-specific code in one place
#ifdef USE_INTEL_ASM
Sys_MakeCodeWriteable ((long) R_Surf8Start,
(long) R_Surf8End - (long) R_Surf8Start);
colormap = vid.colormap8;
R_SurfPatch ();
#endif // USE_INTEL_ASM
D_ViewChanged ();
}
static void
R_DrawEntitiesOnList (void)
{
int j;
unsigned int lnum;
alight_t lighting;
entity_t *ent;
// FIXME: remove and do real lighting
float lightvec[3] = { -1, 0, 0 };
vec3_t dist;
float add;
float minlight = 0;
if (!r_drawentities->int_val)
return;
for (ent = r_ent_queue; ent; ent = ent->next) {
currententity = ent;
switch (currententity->model->type) {
case mod_sprite:
VectorCopy (currententity->origin, r_entorigin);
VectorSubtract (r_origin, r_entorigin, modelorg);
R_DrawSprite ();
break;
case mod_alias:
VectorCopy (currententity->origin, r_entorigin);
VectorSubtract (r_origin, r_entorigin, modelorg);
minlight = max (currententity->model->min_light, currententity->min_light);
// see if the bounding box lets us trivially reject, also
// sets trivial accept status
if (R_AliasCheckBBox ()) {
// 128 instead of 255 due to clamping below
j = max (R_LightPoint (currententity->origin), minlight * 128);
lighting.ambientlight = j;
lighting.shadelight = j;
lighting.plightvec = lightvec;
for (lnum = 0; lnum < r_maxdlights; lnum++) {
if (r_dlights[lnum].die >= vr_data.realtime) {
VectorSubtract (currententity->origin,
r_dlights[lnum].origin, dist);
add = r_dlights[lnum].radius - VectorLength (dist);
if (add > 0)
lighting.ambientlight += add;
}
}
// clamp lighting so it doesn't overbright as much
if (lighting.ambientlight > 128)
lighting.ambientlight = 128;
if (lighting.ambientlight + lighting.shadelight > 192)
lighting.shadelight = 192 - lighting.ambientlight;
R_AliasDrawModel (&lighting);
}
break;
default:
break;
}
}
}
static void
R_DrawViewModel (void)
{
// FIXME: remove and do real lighting
float lightvec[3] = { -1, 0, 0 };
int j;
unsigned int lnum;
vec3_t dist;
float add;
float minlight;
dlight_t *dl;
if (vr_data.inhibit_viewmodel
|| !r_drawviewmodel->int_val
|| !r_drawentities->int_val)
return;
currententity = vr_data.view_model;
if (!currententity->model)
return;
VectorCopy (currententity->origin, r_entorigin);
VectorSubtract (r_origin, r_entorigin, modelorg);
VectorCopy (vup, viewlightvec);
VectorNegate (viewlightvec, viewlightvec);
minlight = max (currententity->min_light, currententity->model->min_light);
j = max (R_LightPoint (currententity->origin), minlight * 128);
r_viewlighting.ambientlight = j;
r_viewlighting.shadelight = j;
// add dynamic lights
for (lnum = 0; lnum < r_maxdlights; lnum++) {
dl = &r_dlights[lnum];
if (!dl->radius)
continue;
if (!dl->radius)
continue;
if (dl->die < vr_data.realtime)
continue;
VectorSubtract (currententity->origin, dl->origin, dist);
add = dl->radius - VectorLength (dist);
if (add > 0)
r_viewlighting.ambientlight += add;
}
// clamp lighting so it doesn't overbright as much
if (r_viewlighting.ambientlight > 128)
r_viewlighting.ambientlight = 128;
if (r_viewlighting.ambientlight + r_viewlighting.shadelight > 192)
r_viewlighting.shadelight = 192 - r_viewlighting.ambientlight;
r_viewlighting.plightvec = lightvec;
R_AliasDrawModel (&r_viewlighting);
}
static int
R_BmodelCheckBBox (model_t *clmodel, float *minmaxs)
{
int i, *pindex, clipflags;
vec3_t acceptpt, rejectpt;
double d;
clipflags = 0;
if (currententity->transform[0] != 1 || currententity->transform[5] != 1
|| currententity->transform[10] != 1) {
for (i = 0; i < 4; i++) {
d = DotProduct (currententity->origin, view_clipplanes[i].normal);
d -= view_clipplanes[i].dist;
if (d <= -clmodel->radius)
return BMODEL_FULLY_CLIPPED;
if (d <= clmodel->radius)
clipflags |= (1 << i);
}
} else {
for (i = 0; i < 4; i++) {
// generate accept and reject points
// FIXME: do with fast look-ups or integer tests based on the
// sign bit of the floating point values
pindex = pfrustum_indexes[i];
rejectpt[0] = minmaxs[pindex[0]];
rejectpt[1] = minmaxs[pindex[1]];
rejectpt[2] = minmaxs[pindex[2]];
d = DotProduct (rejectpt, view_clipplanes[i].normal);
d -= view_clipplanes[i].dist;
if (d <= 0)
return BMODEL_FULLY_CLIPPED;
acceptpt[0] = minmaxs[pindex[3 + 0]];
acceptpt[1] = minmaxs[pindex[3 + 1]];
acceptpt[2] = minmaxs[pindex[3 + 2]];
d = DotProduct (acceptpt, view_clipplanes[i].normal);
d -= view_clipplanes[i].dist;
if (d <= 0)
clipflags |= (1 << i);
}
}
return clipflags;
}
static void
R_DrawBEntitiesOnList (void)
{
int j, clipflags;
unsigned int k;
vec3_t oldorigin;
model_t *clmodel;
float minmaxs[6];
entity_t *ent;
if (!r_drawentities->int_val)
return;
VectorCopy (modelorg, oldorigin);
insubmodel = true;
for (ent = r_ent_queue; ent; ent = ent->next) {
currententity = ent;
switch (currententity->model->type) {
case mod_brush:
clmodel = currententity->model;
// see if the bounding box lets us trivially reject, also
// sets trivial accept status
for (j = 0; j < 3; j++) {
minmaxs[j] = currententity->origin[j] + clmodel->mins[j];
minmaxs[3 + j] = currententity->origin[j] +
clmodel->maxs[j];
}
clipflags = R_BmodelCheckBBox (clmodel, minmaxs);
if (clipflags != BMODEL_FULLY_CLIPPED) {
VectorCopy (currententity->origin, r_entorigin);
VectorSubtract (r_origin, r_entorigin, modelorg);
// FIXME: is this needed?
VectorCopy (modelorg, r_worldmodelorg);
r_pcurrentvertbase = clmodel->vertexes;
// FIXME: stop transforming twice
R_RotateBmodel ();
// calculate dynamic lighting for bmodel if it's not an
// instanced model
if (clmodel->firstmodelsurface != 0) {
vec3_t lightorigin;
for (k = 0; k < r_maxdlights; k++) {
if ((r_dlights[k].die < vr_data.realtime) ||
(!r_dlights[k].radius)) continue;
VectorSubtract (r_dlights[k].origin,
currententity->origin,
lightorigin);
R_RecursiveMarkLights (lightorigin, &r_dlights[k],
1 << k, clmodel->nodes +
clmodel->hulls[0].firstclipnode);
}
}
// if the driver wants polygons, deliver those.
// Z-buffering is on at this point, so no clipping to the
// world tree is needed, just frustum clipping
if (r_drawpolys | r_drawculledpolys) {
R_ZDrawSubmodelPolys (clmodel);
} else {
if (currententity->topnode) {
mnode_t *topnode = currententity->topnode;
if (topnode->contents >= 0) {
// not a leaf; has to be clipped to the world
// BSP
r_clipflags = clipflags;
R_DrawSolidClippedSubmodelPolygons (clmodel);
} else {
// falls entirely in one leaf, so we just put
// all the edges in the edge list and let 1/z
// sorting handle drawing order
R_DrawSubmodelPolygons (clmodel, clipflags);
}
}
}
// put back world rotation and frustum clipping
// FIXME: R_RotateBmodel should just work off base_vxx
VectorCopy (base_vpn, vpn);
VectorCopy (base_vup, vup);
VectorCopy (base_vright, vright);
VectorCopy (base_modelorg, modelorg);
VectorCopy (oldorigin, modelorg);
R_TransformFrustum ();
}
break;
default:
break;
}
}
insubmodel = false;
}
static void
R_PrintDSpeeds (void)
{
float ms, dp_time, r_time2, rw_time, db_time, se_time, de_time,
dv_time;
r_time2 = Sys_DoubleTime ();
dp_time = (dp_time2 - dp_time1) * 1000;
rw_time = (rw_time2 - rw_time1) * 1000;
db_time = (db_time2 - db_time1) * 1000;
se_time = (se_time2 - se_time1) * 1000;
de_time = (de_time2 - de_time1) * 1000;
dv_time = (dv_time2 - dv_time1) * 1000;
ms = (r_time2 - r_time1) * 1000;
Sys_Printf ("%3i %4.1fp %3iw %4.1fb %3is %4.1fe %4.1fv\n",
(int) ms, dp_time, (int) rw_time, db_time, (int) se_time,
de_time, dv_time);
}
static void
R_EdgeDrawing (void)
{
edge_t ledges[NUMSTACKEDGES +
((CACHE_SIZE - 1) / sizeof (edge_t)) + 1];
surf_t lsurfs[NUMSTACKSURFACES +
((CACHE_SIZE - 1) / sizeof (surf_t)) + 1];
if (auxedges) {
r_edges = auxedges;
} else {
r_edges = (edge_t *)
(((intptr_t) &ledges[0] + CACHE_SIZE - 1) & ~(CACHE_SIZE - 1));
}
if (r_surfsonstack) {
surfaces = (surf_t *)
(((intptr_t) &lsurfs[0] + CACHE_SIZE - 1) & ~(CACHE_SIZE - 1));
surf_max = &surfaces[r_cnumsurfs];
// surface 0 doesn't really exist; it's just a dummy because index 0
// is used to indicate no edge attached to surface
surfaces--;
R_SurfacePatch ();
}
R_BeginEdgeFrame ();
if (r_dspeeds->int_val) {
rw_time1 = Sys_DoubleTime ();
}
R_RenderWorld ();
if (r_drawculledpolys)
R_ScanEdges ();
// only the world can be drawn back to front with no z reads or compares,
// just z writes, so have the driver turn z compares on now
D_TurnZOn ();
if (r_dspeeds->int_val) {
rw_time2 = Sys_DoubleTime ();
db_time1 = rw_time2;
}
R_DrawBEntitiesOnList ();
if (r_dspeeds->int_val) {
db_time2 = Sys_DoubleTime ();
se_time1 = db_time2;
}
if (!r_dspeeds->int_val) {
VID_UnlockBuffer ();
S_ExtraUpdate (); // don't let sound get messed up if going slow
VID_LockBuffer ();
}
if (!(r_drawpolys | r_drawculledpolys))
R_ScanEdges ();
}
/*
R_RenderView
r_refdef must be set before the first call
*/
static void
R_RenderView_ (void)
{
byte warpbuffer[WARP_WIDTH * WARP_HEIGHT];
if (r_norefresh->int_val)
return;
r_warpbuffer = warpbuffer;
if (r_timegraph->int_val || r_speeds->int_val || r_dspeeds->int_val)
r_time1 = Sys_DoubleTime ();
R_SetupFrame ();
R_MarkLeaves (); // done here so we know if we're in water
R_PushDlights (vec3_origin);
// make FDIV fast. This reduces timing precision after we've been running for a
// while, so we don't do it globally. This also sets chop mode, and we do it
// here so that setup stuff like the refresh area calculations match what's
// done in screen.c
R_LowFPPrecision ();
if (!r_worldentity.model)
Sys_Error ("R_RenderView: NULL worldmodel");
if (!r_dspeeds->int_val) {
VID_UnlockBuffer ();
S_ExtraUpdate (); // don't let sound get messed up if going slow
VID_LockBuffer ();
}
R_EdgeDrawing ();
if (!r_dspeeds->int_val) {
VID_UnlockBuffer ();
S_ExtraUpdate (); // don't let sound get messed up if going slow
VID_LockBuffer ();
}
if (r_dspeeds->int_val) {
se_time2 = Sys_DoubleTime ();
de_time1 = se_time2;
}
R_DrawEntitiesOnList ();
if (r_dspeeds->int_val) {
de_time2 = Sys_DoubleTime ();
dv_time1 = de_time2;
}
R_DrawViewModel ();
if (r_dspeeds->int_val) {
dv_time2 = Sys_DoubleTime ();
dp_time1 = Sys_DoubleTime ();
}
R_DrawParticles ();
if (r_dspeeds->int_val)
dp_time2 = Sys_DoubleTime ();
if (r_dowarp)
D_WarpScreen ();
if (r_timegraph->int_val)
R_TimeGraph ();
if (r_zgraph->int_val)
R_ZGraph ();
if (r_aliasstats->int_val)
R_PrintAliasStats ();
if (r_speeds->int_val)
R_PrintTimes ();
if (r_dspeeds->int_val)
R_PrintDSpeeds ();
if (r_reportsurfout->int_val && r_outofsurfaces)
Sys_Printf ("Short %d surfaces\n", r_outofsurfaces);
if (r_reportedgeout->int_val && r_outofedges)
Sys_Printf ("Short roughly %d edges\n", r_outofedges * 2 / 3);
// back to high floating-point precision
R_HighFPPrecision ();
}
static void R_RenderViewFishEye (void);
void
R_RenderView (void)
{
int dummy;
int delta;
delta = (byte *) & dummy - r_stack_start;
if (delta < -10000 || delta > 10000)
Sys_Error ("R_RenderView: called without enough stack");
if (Hunk_LowMark () & 3)
Sys_Error ("Hunk is missaligned");
if ((intptr_t) (&dummy) & 3)
Sys_Error ("Stack is missaligned");
if ((intptr_t) (&r_warpbuffer) & 3)
Sys_Error ("Globals are missaligned");
if (!scr_fisheye->int_val)
R_RenderView_ ();
else
R_RenderViewFishEye ();
}
void
R_InitTurb (void)
{
int i;
for (i = 0; i < (SIN_BUFFER_SIZE); i++) {
sintable[i] = AMP + sin (i * 3.14159 * 2 / CYCLE) * AMP;
intsintable[i] = AMP2 + sin (i * 3.14159 * 2 / CYCLE) * AMP2;
// AMP2 not 20
}
}
#define BOX_FRONT 0
#define BOX_BEHIND 2
#define BOX_LEFT 3
#define BOX_RIGHT 1
#define BOX_TOP 4
#define BOX_BOTTOM 5
#define DEG(x) (x / M_PI * 180.0)
#define RAD(x) (x * M_PI / 180.0)
struct my_coords
{
double x, y, z;
};
struct my_angles
{
double yaw, pitch, roll;
};
static void
x_rot (struct my_coords *c, double pitch)
{
double nx, ny, nz;
nx = c->x;
ny = (c->y * cos(pitch)) - (c->z * sin(pitch));
nz = (c->y * sin(pitch)) + (c->z * cos(pitch));
c->x = nx; c->y = ny; c->z = nz;
}
static void
y_rot (struct my_coords *c, double yaw)
{
double nx, ny, nz;
nx = (c->x * cos(yaw)) - (c->z * sin(yaw));
ny = c->y;
nz = (c->x * sin(yaw)) + (c->z * cos(yaw));
c->x = nx; c->y = ny; c->z = nz;
}
static void
z_rot (struct my_coords *c, double roll)
{
double nx, ny, nz;
nx = (c->x * cos(roll)) - (c->y * sin(roll));
ny = (c->x * sin(roll)) + (c->y * cos(roll));
nz = c->z;
c->x = nx; c->y = ny; c->z = nz;
}
static void
my_get_angles (struct my_coords *in_o, struct my_coords *in_u, struct my_angles *a)
{
double rad_yaw, rad_pitch;
struct my_coords o, u;
a->pitch = 0.0;
a->yaw = 0.0;
a->roll = 0.0;
// make a copy of the coords
o.x = in_o->x; o.y = in_o->y; o.z = in_o->z;
u.x = in_u->x; u.y = in_u->y; u.z = in_u->z;
// special case when looking straight up or down
if ((o.x == 0.0) && (o.z == 0.0)) {
a->yaw = 0.0;
if (o.y > 0.0) { a->pitch = -90.0; a->roll = 180.0 - DEG(atan2(u.x, u.z)); } // down
else { a->pitch = 90.0; a->roll = DEG(atan2(u.x, u.z)); } // up
return;
}
// get yaw angle and then rotate o and u so that yaw = 0
rad_yaw = atan2 (-o.x, o.z);
a->yaw = DEG (rad_yaw);
y_rot (&o, -rad_yaw);
y_rot (&u, -rad_yaw);
// get pitch and then rotate o and u so that pitch = 0
rad_pitch = atan2 (-o.y, o.z);
a->pitch = DEG (rad_pitch);
x_rot (&o, -rad_pitch);
x_rot (&u, -rad_pitch);
// get roll
a->roll = DEG (-atan2(u.x, u.y));
}
static void
get_ypr (double yaw, double pitch, double roll, int side, struct my_angles *a)
{
struct my_coords o, u;
// get 'o' (observer) and 'u' ('this_way_up') depending on box side
switch(side) {
case BOX_FRONT:
o.x = 0.0; o.y = 0.0; o.z = 1.0;
u.x = 0.0; u.y = 1.0; u.z = 0.0;
break;
case BOX_BEHIND:
o.x = 0.0; o.y = 0.0; o.z = -1.0;
u.x = 0.0; u.y = 1.0; u.z = 0.0;
break;
case BOX_LEFT:
o.x = -1.0; o.y = 0.0; o.z = 0.0;
u.x = -1.0; u.y = 1.0; u.z = 0.0;
break;
case BOX_RIGHT:
o.x = 1.0; o.y = 0.0; o.z = 0.0;
u.x = 0.0; u.y = 1.0; u.z = 0.0;
break;
case BOX_TOP:
o.x = 0.0; o.y = -1.0; o.z = 0.0;
u.x = 0.0; u.y = 0.0; u.z = -1.0;
break;
case BOX_BOTTOM:
o.x = 0.0; o.y = 1.0; o.z = 0.0;
u.x = 0.0; u.y = 0.0; u.z = -1.0;
break;
}
z_rot (&o, roll); z_rot (&u, roll);
x_rot (&o, pitch); x_rot (&u, pitch);
y_rot (&o, yaw); y_rot (&u, yaw);
my_get_angles (&o, &u, a);
// normalise angles
while (a->yaw < 0.0) a->yaw += 360.0;
while (a->yaw > 360.0) a->yaw -= 360.0;
while (a->pitch < 0.0) a->pitch += 360.0;
while (a->pitch > 360.0) a->pitch -= 360.0;
while (a->roll < 0.0) a->roll += 360.0;
while (a->roll > 360.0) a->roll -= 360.0;
}
static void
fisheyelookuptable (byte **buf, int width, int height, byte *scrp, double fov)
{
int x, y;
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
double dx = x-width/2;
double dy = -(y-height/2);
double yaw = sqrt(dx*dx+dy*dy)*fov/((double)width);
double roll = -atan2(dy, dx);
double sx = sin(yaw) * cos(roll);
double sy = sin(yaw) * sin(roll);
double sz = cos(yaw);
// determine which side of the box we need
double abs_x = fabs(sx);
double abs_y = fabs(sy);
double abs_z = fabs(sz);
int side;
double xs = 0, ys = 0;
if (abs_x > abs_y) {
if (abs_x > abs_z) { side = ((sx > 0.0) ? BOX_RIGHT : BOX_LEFT); }
else { side = ((sz > 0.0) ? BOX_FRONT : BOX_BEHIND); }
} else {
if (abs_y > abs_z) { side = ((sy > 0.0) ? BOX_TOP : BOX_BOTTOM); }
else { side = ((sz > 0.0) ? BOX_FRONT : BOX_BEHIND); }
}
#define RC(x) ((x / 2.06) + 0.5)
#define R2(x) ((x / 2.03) + 0.5)
// scale up our vector [x,y,z] to the box
switch(side) {
case BOX_FRONT: xs = RC( sx / sz); ys = R2( sy / sz); break;
case BOX_BEHIND: xs = RC(-sx / -sz); ys = R2( sy / -sz); break;
case BOX_LEFT: xs = RC( sz / -sx); ys = R2( sy / -sx); break;
case BOX_RIGHT: xs = RC(-sz / sx); ys = R2( sy / sx); break;
case BOX_TOP: xs = RC( sx / sy); ys = R2( sz / -sy); break; //bot
case BOX_BOTTOM: xs = RC(-sx / sy); ys = R2( sz / -sy); break; //top??
}
if (xs < 0.0) xs = 0.0;
if (xs >= 1.0) xs = 0.999;
if (ys < 0.0) ys = 0.0;
if (ys >= 1.0) ys = 0.999;
*buf++ = scrp+(((int)(xs*(double)width))+
((int)(ys*(double)height))*width)+
side*width*height;
}
}
}
static void
rendercopy (void *dest)
{
void *p = vid.buffer;
// XXX
vid.buffer = dest;
R_RenderView_ ();
vid.buffer = p;
}
static void
renderside (byte* bufs, double yaw, double pitch, double roll, int side)
{
struct my_angles a;
get_ypr (RAD(yaw), RAD(pitch), RAD(roll), side, &a);
if (side == BOX_RIGHT) { a.roll = -a.roll; a.pitch = -a.pitch; }
if (side == BOX_LEFT) { a.roll = -a.roll; a.pitch = -a.pitch; }
if (side == BOX_TOP) { a.yaw += 180.0; a.pitch = 180.0 - a.pitch; }
r_refdef.viewangles[YAW] = a.yaw;
r_refdef.viewangles[PITCH] = a.pitch;
r_refdef.viewangles[ROLL] = a.roll;
rendercopy (bufs);
}
static void
renderlookup (byte **offs, byte* bufs)
{
byte *p = (byte*)vid.buffer;
unsigned int x, y;
for (y = 0; y < vid.height; y++) {
for (x = 0; x < vid.width; x++, offs++)
p[x] = **offs;
p += vid.rowbytes;
}
}
static void
R_RenderViewFishEye (void)
{
int width = vid.width; //r_refdef.vrect.width;
int height = vid.height; //r_refdef.vrect.height;
int scrsize = width*height;
int fov = scr_ffov->int_val;
int views = scr_fviews->int_val;
double yaw = r_refdef.viewangles[YAW];
double pitch = r_refdef.viewangles[PITCH];
double roll = 0; //r_refdef.viewangles[ROLL];
static int pwidth = -1;
static int pheight = -1;
static int pfov = -1;
static int pviews = -1;
static byte *scrbufs = NULL;
static byte **offs = NULL;
if (fov < 1) fov = 1;
if (pwidth != width || pheight != height || pfov != fov) {
if (scrbufs) free (scrbufs);
if (offs) free (offs);
scrbufs = malloc (scrsize*6); // front|right|back|left|top|bottom
SYS_CHECKMEM (scrbufs);
offs = malloc (scrsize*sizeof(byte*));
SYS_CHECKMEM (offs);
pwidth = width;
pheight = height;
pfov = fov;
fisheyelookuptable (offs, width, height, scrbufs, ((double)fov)*M_PI/180.0);
}
if (views != pviews) {
pviews = views;
memset (scrbufs, 0, scrsize*6);
}
switch (views) {
case 6: renderside (scrbufs+scrsize*2, yaw, pitch, roll, BOX_BEHIND);
case 5: renderside (scrbufs+scrsize*5, yaw, pitch, roll, BOX_BOTTOM);
case 4: renderside (scrbufs+scrsize*4, yaw, pitch, roll, BOX_TOP);
case 3: renderside (scrbufs+scrsize*3, yaw, pitch, roll, BOX_LEFT);
case 2: renderside (scrbufs+scrsize, yaw, pitch, roll, BOX_RIGHT);
default: renderside (scrbufs, yaw, pitch, roll, BOX_FRONT);
}
r_refdef.viewangles[YAW] = yaw;
r_refdef.viewangles[PITCH] = pitch;
r_refdef.viewangles[ROLL] = roll;
renderlookup (offs, scrbufs);
}
void
R_ClearState (void)
{
R_ClearEfrags ();
R_ClearDlights ();
R_ClearParticles ();
}