quakeforge/libs/video/renderer/vulkan/vulkan_lighting.c
Bill Currie a6df8ab995 [renderer] Move a couple functions to using vec4f_t
Makes for a few less FIXMEs and better consistency with vectors.
2022-03-30 23:53:30 +09:00

1018 lines
29 KiB
C

/*
vulkan_lighting.c
Vulkan lighting pass pipeline
Copyright (C) 2021 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2021/2/23
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "qfalloca.h"
#include "QF/cvar.h"
#include "QF/dstring.h"
#include "QF/plist.h"
#include "QF/progs.h"
#include "QF/script.h"
#include "QF/set.h"
#include "QF/sys.h"
#include "QF/va.h"
#include "QF/Vulkan/qf_lighting.h"
#include "QF/Vulkan/qf_texture.h"
#include "QF/Vulkan/barrier.h"
#include "QF/Vulkan/buffer.h"
#include "QF/Vulkan/debug.h"
#include "QF/Vulkan/descriptor.h"
#include "QF/Vulkan/device.h"
#include "QF/Vulkan/image.h"
#include "QF/Vulkan/instance.h"
#include "QF/Vulkan/projection.h"
#include "QF/Vulkan/renderpass.h"
#include "QF/Vulkan/staging.h"
#include "compat.h"
#include "r_internal.h"
#include "vid_vulkan.h"
static vec4f_t ref_direction = { 0, 0, 1, 0 };
static void
expand_pvs (set_t *pvs, model_t *model)
{
set_t base_pvs = SET_STATIC_INIT (model->brush.visleafs, alloca);
set_assign (&base_pvs, pvs);
for (unsigned i = 0; i < model->brush.visleafs; i++) {
if (set_is_member (&base_pvs, i)) {
Mod_LeafPVS_mix (model->brush.leafs + i + 1, model, 0, pvs);
}
}
}
static void
find_visible_lights (vulkan_ctx_t *ctx)
{
//qfv_device_t *device = ctx->device;
//qfv_devfuncs_t *dfunc = device->funcs;
lightingctx_t *lctx = ctx->lighting_context;
lightingframe_t *lframe = &lctx->frames.a[ctx->curFrame];
mleaf_t *leaf = r_refdef.viewleaf;
model_t *model = r_refdef.worldmodel;
if (!leaf || !model) {
return;
}
if (leaf != lframe->leaf) {
//double start = Sys_DoubleTime ();
int flags = 0;
if (leaf == model->brush.leafs) {
set_everything (lframe->pvs);
} else {
Mod_LeafPVS_set (leaf, model, 0, lframe->pvs);
expand_pvs (lframe->pvs, model);
}
for (unsigned i = 0; i < model->brush.visleafs; i++) {
if (set_is_member (lframe->pvs, i)) {
flags |= model->brush.leaf_flags[i + 1];
}
}
lframe->leaf = leaf;
//double end = Sys_DoubleTime ();
//Sys_Printf ("find_visible_lights: %.5gus\n", (end - start) * 1e6);
int visible = 0;
memset (lframe->lightvis.a, 0, lframe->lightvis.size * sizeof (byte));
for (size_t i = 0; i < lctx->lightleafs.size; i++) {
int l = lctx->lightleafs.a[i];
if ((l == -1 && (flags & SURF_DRAWSKY))
|| set_is_member (lframe->pvs, l)) {
lframe->lightvis.a[i] = 1;
visible++;
}
}
//Sys_Printf ("find_visible_lights: %d / %zd visible\n", visible,
// lframe->lightvis.size);
}
}
static void
update_lights (vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
lightingctx_t *lctx = ctx->lighting_context;
lightingframe_t *lframe = &lctx->frames.a[ctx->curFrame];
find_visible_lights (ctx);
dlight_t *lights[MaxLights];
qfv_packet_t *packet = QFV_PacketAcquire (ctx->staging);
qfv_light_buffer_t *light_data = QFV_PacketExtend (packet,
sizeof (*light_data));
for (int i = 0; i < NumStyles; i++) {
light_data->intensity[i] = d_lightstylevalue[i] / 65536.0;
}
// dynamic lights seem a tad faint, so 16x map lights
light_data->intensity[64] = 1 / 16.0;
light_data->intensity[65] = 1 / 16.0;
light_data->intensity[66] = 1 / 16.0;
light_data->intensity[67] = 1 / 16.0;
light_data->distFactor1 = 1 / 128.0;
light_data->distFactor2 = 1 / 16384.0;
light_data->lightCount = 0;
R_FindNearLights (r_refdef.frame.position, MaxLights - 1, lights);
for (int i = 0; i < MaxLights - 1; i++) {
if (!lights[i]) {
break;
}
light_data->lightCount++;
VectorCopy (lights[i]->color, light_data->lights[i].color);
VectorCopy (lights[i]->origin, light_data->lights[i].position);
light_data->lights[i].light = lights[i]->radius;
light_data->lights[i].data = 64; // default dynamic light
VectorZero (light_data->lights[i].direction);
light_data->lights[i].cone = 1;
}
for (size_t i = 0; (i < lframe->lightvis.size
&& light_data->lightCount < MaxLights); i++) {
if (lframe->lightvis.a[i]) {
light_data->lights[light_data->lightCount++] = lctx->lights.a[i];
}
}
qfv_bufferbarrier_t bb = bufferBarriers[qfv_BB_Unknown_to_TransferWrite];
bb.barrier.buffer = lframe->light_buffer;
bb.barrier.size = sizeof (qfv_light_buffer_t);
dfunc->vkCmdPipelineBarrier (packet->cmd, bb.srcStages, bb.dstStages,
0, 0, 0, 1, &bb.barrier, 0, 0);
VkBufferCopy copy_region[] = {
{ packet->offset, 0, sizeof (qfv_light_buffer_t) },
};
dfunc->vkCmdCopyBuffer (packet->cmd, ctx->staging->buffer,
lframe->light_buffer, 1, &copy_region[0]);
bb = bufferBarriers[qfv_BB_TransferWrite_to_UniformRead];
bb.barrier.buffer = lframe->light_buffer;
bb.barrier.size = sizeof (qfv_light_buffer_t);
dfunc->vkCmdPipelineBarrier (packet->cmd, bb.srcStages, bb.dstStages,
0, 0, 0, 1, &bb.barrier, 0, 0);
QFV_PacketSubmit (packet);
}
void
Vulkan_Lighting_Draw (qfv_renderframe_t *rFrame)
{
vulkan_ctx_t *ctx = rFrame->vulkan_ctx;
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
qfv_renderpass_t *renderpass = rFrame->renderpass;
update_lights (ctx);
lightingctx_t *lctx = ctx->lighting_context;
__auto_type cframe = &ctx->frames.a[ctx->curFrame];
lightingframe_t *lframe = &lctx->frames.a[ctx->curFrame];
VkCommandBuffer cmd = lframe->cmd;
DARRAY_APPEND (&rFrame->subpassCmdSets[QFV_passLighting], cmd);
dfunc->vkResetCommandBuffer (cmd, 0);
VkCommandBufferInheritanceInfo inherit = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO, 0,
renderpass->renderpass, QFV_passLighting,
cframe->framebuffer,
0, 0, 0,
};
VkCommandBufferBeginInfo beginInfo = {
VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, 0,
VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT
| VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT, &inherit,
};
dfunc->vkBeginCommandBuffer (cmd, &beginInfo);
QFV_duCmdBeginLabel (device, cmd, "lighting", { 0.6, 0.5, 0.6, 1});
dfunc->vkCmdBindPipeline (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
lctx->pipeline);
lframe->bufferInfo[0].buffer = lframe->light_buffer;
lframe->attachInfo[0].imageView
= renderpass->attachment_views->a[QFV_attachDepth];
lframe->attachInfo[1].imageView
= renderpass->attachment_views->a[QFV_attachColor];
lframe->attachInfo[2].imageView
= renderpass->attachment_views->a[QFV_attachEmission];
lframe->attachInfo[3].imageView
= renderpass->attachment_views->a[QFV_attachNormal];
lframe->attachInfo[4].imageView
= renderpass->attachment_views->a[QFV_attachPosition];
dfunc->vkUpdateDescriptorSets (device->dev,
LIGHTING_DESCRIPTORS,
lframe->descriptors, 0, 0);
VkDescriptorSet sets[] = {
lframe->attachWrite[0].dstSet,
lframe->bufferWrite[0].dstSet,
lframe->shadowWrite.dstSet,
};
dfunc->vkCmdBindDescriptorSets (cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,
lctx->layout, 0, 3, sets, 0, 0);
dfunc->vkCmdSetViewport (cmd, 0, 1, &ctx->viewport);
dfunc->vkCmdSetScissor (cmd, 0, 1, &ctx->scissor);
VkDeviceSize offset = 0;
dfunc->vkCmdBindVertexBuffers (cmd, 0, 1, &ctx->quad_buffer, &offset);
dfunc->vkCmdDraw (cmd, 4, 1, 0, 0);
QFV_duCmdEndLabel (device, cmd);
dfunc->vkEndCommandBuffer (cmd);
}
static VkDescriptorBufferInfo base_buffer_info = {
0, 0, VK_WHOLE_SIZE
};
static VkDescriptorImageInfo base_image_info = {
0, 0, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
};
static VkWriteDescriptorSet base_buffer_write = {
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0,
0, 0, 1,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0, 0, 0
};
static VkWriteDescriptorSet base_attachment_write = {
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0,
0, 0, 1,
VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT,
0, 0, 0
};
static VkWriteDescriptorSet base_image_write = {
VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, 0, 0,
0, 0, 1,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
0, 0, 0
};
void
Vulkan_Lighting_Init (vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
qfvPushDebug (ctx, "lighting init");
lightingctx_t *lctx = calloc (1, sizeof (lightingctx_t));
ctx->lighting_context = lctx;
DARRAY_INIT (&lctx->lights, 16);
DARRAY_INIT (&lctx->lightleafs, 16);
DARRAY_INIT (&lctx->lightmats, 16);
DARRAY_INIT (&lctx->lightlayers, 16);
DARRAY_INIT (&lctx->lightimages, 16);
DARRAY_INIT (&lctx->lightviews, 16);
size_t frames = ctx->frames.size;
DARRAY_INIT (&lctx->frames, frames);
DARRAY_RESIZE (&lctx->frames, frames);
lctx->frames.grow = 0;
lctx->pipeline = Vulkan_CreateGraphicsPipeline (ctx, "lighting");
lctx->layout = Vulkan_CreatePipelineLayout (ctx, "lighting_layout");
lctx->sampler = Vulkan_CreateSampler (ctx, "shadow_sampler");
__auto_type lbuffers = QFV_AllocBufferSet (frames, alloca);
for (size_t i = 0; i < frames; i++) {
lbuffers->a[i] = QFV_CreateBuffer (device, sizeof (qfv_light_buffer_t),
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT
| VK_BUFFER_USAGE_TRANSFER_DST_BIT);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_BUFFER,
lbuffers->a[i],
va (ctx->va_ctx, "buffer:lighting:%zd", i));
}
VkMemoryRequirements requirements;
dfunc->vkGetBufferMemoryRequirements (device->dev, lbuffers->a[0],
&requirements);
size_t light_size = QFV_NextOffset (requirements.size, &requirements);
lctx->light_memory = QFV_AllocBufferMemory (device, lbuffers->a[0],
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
frames * light_size, 0);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DEVICE_MEMORY,
lctx->light_memory, "memory:lighting");
__auto_type cmdSet = QFV_AllocCommandBufferSet (1, alloca);
__auto_type attach = QFV_AllocDescriptorSetLayoutSet (frames, alloca);
__auto_type lights = QFV_AllocDescriptorSetLayoutSet (frames, alloca);
__auto_type shadow = QFV_AllocDescriptorSetLayoutSet (frames, alloca);
for (size_t i = 0; i < frames; i++) {
attach->a[i] = Vulkan_CreateDescriptorSetLayout (ctx,
"lighting_attach");
lights->a[i] = Vulkan_CreateDescriptorSetLayout (ctx,
"lighting_lights");
shadow->a[i] = Vulkan_CreateDescriptorSetLayout (ctx,
"lighting_shadow");
}
__auto_type attach_pool = Vulkan_CreateDescriptorPool (ctx,
"lighting_attach_pool");
__auto_type lights_pool = Vulkan_CreateDescriptorPool (ctx,
"lighting_lights_pool");
__auto_type shadow_pool = Vulkan_CreateDescriptorPool (ctx,
"lighting_shadow_pool");
__auto_type attach_set = QFV_AllocateDescriptorSet (device, attach_pool,
attach);
__auto_type lights_set = QFV_AllocateDescriptorSet (device, lights_pool,
lights);
__auto_type shadow_set = QFV_AllocateDescriptorSet (device, shadow_pool,
shadow);
VkDeviceSize light_offset = 0;
for (size_t i = 0; i < frames; i++) {
__auto_type lframe = &lctx->frames.a[i];
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
attach_set->a[i],
va (ctx->va_ctx, "lighting:attach_set:%zd", i));
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
lights_set->a[i],
va (ctx->va_ctx, "lighting:lights_set:%zd", i));
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DESCRIPTOR_SET,
shadow_set->a[i],
va (ctx->va_ctx, "lighting:shadow_set:%zd", i));
DARRAY_INIT (&lframe->lightvis, 16);
lframe->pvs = 0;
lframe->leaf = 0;
QFV_AllocateCommandBuffers (device, ctx->cmdpool, 1, cmdSet);
lframe->cmd = cmdSet->a[0];
lframe->light_buffer = lbuffers->a[i];
QFV_BindBufferMemory (device, lbuffers->a[i], lctx->light_memory,
light_offset);
light_offset += light_size;
QFV_duSetObjectName (device, VK_OBJECT_TYPE_COMMAND_BUFFER,
lframe->cmd, "cmd:lighting");
for (int j = 0; j < LIGHTING_BUFFER_INFOS; j++) {
lframe->bufferInfo[j] = base_buffer_info;
lframe->bufferWrite[j] = base_buffer_write;
lframe->bufferWrite[j].dstSet = lights_set->a[i];
lframe->bufferWrite[j].dstBinding = j;
lframe->bufferWrite[j].pBufferInfo = &lframe->bufferInfo[j];
}
for (int j = 0; j < LIGHTING_ATTACH_INFOS; j++) {
lframe->attachInfo[j] = base_image_info;
lframe->attachInfo[j].sampler = 0;
lframe->attachWrite[j] = base_attachment_write;
lframe->attachWrite[j].dstSet = attach_set->a[i];
lframe->attachWrite[j].dstBinding = j;
lframe->attachWrite[j].pImageInfo = &lframe->attachInfo[j];
}
for (int j = 0; j < LIGHTING_SHADOW_INFOS; j++) {
lframe->shadowInfo[j] = base_image_info;
lframe->shadowInfo[j].sampler = lctx->sampler;
lframe->shadowInfo[j].imageView = ctx->default_black->view;
}
lframe->shadowWrite = base_image_write;
lframe->shadowWrite.dstSet = shadow_set->a[i];
lframe->shadowWrite.dstBinding = 0;
lframe->shadowWrite.descriptorCount
= min (MaxLights,
device->physDev->properties.limits.maxPerStageDescriptorSamplers);
lframe->shadowWrite.pImageInfo = lframe->shadowInfo;
}
free (attach_set);
free (lights_set);
qfvPopDebug (ctx);
}
static void
clear_shadows (vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
lightingctx_t *lctx = ctx->lighting_context;
if (lctx->shadow_memory) {
dfunc->vkFreeMemory (device->dev, lctx->shadow_memory, 0);
}
for (size_t i = 0; i < lctx->lightviews.size; i++) {
dfunc->vkDestroyImageView (device->dev, lctx->lightviews.a[i], 0);
}
for (size_t i = 0; i < lctx->lightimages.size; i++) {
dfunc->vkDestroyImage (device->dev, lctx->lightimages.a[i], 0);
}
lctx->lightimages.size = 0;
lctx->lightviews.size = 0;
}
void
Vulkan_Lighting_Shutdown (vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
lightingctx_t *lctx = ctx->lighting_context;
clear_shadows (ctx);
for (size_t i = 0; i < lctx->frames.size; i++) {
lightingframe_t *lframe = &lctx->frames.a[i];
dfunc->vkDestroyBuffer (device->dev, lframe->light_buffer, 0);
DARRAY_CLEAR (&lframe->lightvis);
}
dfunc->vkFreeMemory (device->dev, lctx->light_memory, 0);
dfunc->vkDestroyPipeline (device->dev, lctx->pipeline, 0);
DARRAY_CLEAR (&lctx->lights);
DARRAY_CLEAR (&lctx->lightleafs);
DARRAY_CLEAR (&lctx->lightmats);
DARRAY_CLEAR (&lctx->lightimages);
DARRAY_CLEAR (&lctx->lightlayers);
DARRAY_CLEAR (&lctx->lightviews);
free (lctx->frames.a);
free (lctx);
}
static void
dump_light (qfv_light_t *light, int leaf, mat4f_t mat)
{
Sys_MaskPrintf (SYS_vulkan,
"[%g, %g, %g] %d %d %d, "
"[%g %g %g] %g, [%g %g %g] %g, %d\n",
VectorExpand (light->color),
(light->data & 0x07f),
(light->data & 0x380) >> 7,
(light->data & 0xc00) >> 10,
VectorExpand (light->position), light->light,
VectorExpand (light->direction), light->cone,
leaf);
Sys_MaskPrintf (SYS_vulkan, " " VEC4F_FMT "\n", MAT4_ROW (mat, 0));
Sys_MaskPrintf (SYS_vulkan, " " VEC4F_FMT "\n", MAT4_ROW (mat, 1));
Sys_MaskPrintf (SYS_vulkan, " " VEC4F_FMT "\n", MAT4_ROW (mat, 2));
Sys_MaskPrintf (SYS_vulkan, " " VEC4F_FMT "\n", MAT4_ROW (mat, 3));
}
static float
parse_float (const char *str, float defval)
{
float val = defval;
if (str) {
char *end;
val = strtof (str, &end);
if (end == str) {
val = defval;
}
}
return val;
}
static void
parse_vector (const char *str, vec_t *val)
{
if (str) {
int num = sscanf (str, "%f %f %f", VectorExpandAddr (val));
while (num < 3) {
val[num++] = 0;
}
}
}
static float
ecos (float ang)
{
if (ang == 90 || ang == -90) {
return 0;
}
if (ang == 180 || ang == -180) {
return -1;
}
if (ang == 0 || ang == 360) {
return 1;
}
return cos (ang * M_PI / 180);
}
static float
esin (float ang)
{
if (ang == 90) {
return 1;
}
if (ang == -90) {
return -1;
}
if (ang == 180 || ang == -180) {
return 0;
}
if (ang == 0 || ang == 360) {
return 0;
}
return sin (ang * M_PI / 180);
}
static void
sun_vector (const vec_t *ang, vec_t *vec)
{
// ang is yaw, pitch (maybe roll, but ignored
vec[0] = ecos (ang[1]) * ecos (ang[0]);
vec[1] = ecos (ang[1]) * esin (ang[0]);
vec[2] = esin (ang[1]);
}
static void
parse_sun (lightingctx_t *lctx, plitem_t *entity, model_t *model)
{
qfv_light_t light = {};
float sunlight;
//float sunlight2;
vec3_t sunangle = { 0, -90, 0 };
set_expand (lctx->sun_pvs, model->brush.visleafs);
set_empty (lctx->sun_pvs);
sunlight = parse_float (PL_String (PL_ObjectForKey (entity,
"_sunlight")), 0);
//sunlight2 = parse_float (PL_String (PL_ObjectForKey (entity,
// "_sunlight2")), 0);
parse_vector (PL_String (PL_ObjectForKey (entity, "_sun_mangle")),
sunangle);
if (sunlight <= 0) {
return;
}
VectorSet (1, 1, 1, light.color);
light.data = LM_INFINITE | ST_CASCADE;
light.light = sunlight;
sun_vector (sunangle, light.direction);
light.cone = 1;
DARRAY_APPEND (&lctx->lights, light);
DARRAY_APPEND (&lctx->lightleafs, -1);
// Any leaf with sky surfaces can potentially see the sun, thus put
// the sun "in" every leaf with a sky surface
// however, skip leaf 0 as it is the exterior solid leaf
for (unsigned l = 1; l < model->brush.modleafs; l++) {
if (model->brush.leaf_flags[l] & SURF_DRAWSKY) {
set_add (lctx->sun_pvs, l - 1); //pvs is 1-based
}
}
// any leaf visible from a leaf with a sky surface (and thus the sun)
// can receive shadows from the sun
expand_pvs (lctx->sun_pvs, model);
}
static void
parse_light (qfv_light_t *light, const plitem_t *entity,
const plitem_t *targets)
{
const char *str;
int model = 0;
/*Sys_Printf ("{\n");
for (int i = PL_D_NumKeys (entity); i-- > 0; ) {
const char *field = PL_KeyAtIndex (entity, i);
const char *value = PL_String (PL_ObjectForKey (entity, field));
Sys_Printf ("\t%s = %s\n", field, value);
}
Sys_Printf ("}\n");*/
light->cone = 1;
light->data = 0;
light->light = 300;
VectorSet (1, 1, 1, light->color);
if ((str = PL_String (PL_ObjectForKey (entity, "origin")))) {
sscanf (str, "%f %f %f", VectorExpandAddr (light->position));
}
if ((str = PL_String (PL_ObjectForKey (entity, "target")))) {
vec3_t position = {};
plitem_t *target = PL_ObjectForKey (targets, str);
if (target) {
if ((str = PL_String (PL_ObjectForKey (target, "origin")))) {
sscanf (str, "%f %f %f", VectorExpandAddr (position));
}
VectorSubtract (position, light->position, light->direction);
VectorNormalize (light->direction);
}
float angle = 40;
if ((str = PL_String (PL_ObjectForKey (entity, "angle")))) {
angle = atof (str);
}
light->cone = -cos (angle * M_PI / 360); // half angle
}
if ((str = PL_String (PL_ObjectForKey (entity, "light_lev")))
|| (str = PL_String (PL_ObjectForKey (entity, "_light")))) {
light->light = atof (str);
}
if ((str = PL_String (PL_ObjectForKey (entity, "style")))) {
light->data = atoi (str) & 0x3f;
}
if ((str = PL_String (PL_ObjectForKey (entity, "delay")))) {
model = (atoi (str) & 0x7) << 7;
if (model == LM_INVERSE2) {
model = LM_INVERSE3; //FIXME for marcher (need a map)
}
light->data |= model;
}
if ((str = PL_String (PL_ObjectForKey (entity, "color")))
|| (str = PL_String (PL_ObjectForKey (entity, "_color")))) {
sscanf (str, "%f %f %f", VectorExpandAddr (light->color));
VectorScale (light->color, 1/255.0, light->color);
}
if (model == LM_INFINITE) {
light->data |= ST_CASCADE;
} else if (model != LM_AMBIENT) {
if (light->cone > -0.5) {
light->data |= ST_CUBE;
} else {
light->data |= ST_PLANE;
}
}
}
static void
create_light_matrices (lightingctx_t *lctx)
{
DARRAY_RESIZE (&lctx->lightmats, lctx->lights.size);
for (size_t i = 0; i < lctx->lights.size; i++) {
qfv_light_t *light = &lctx->lights.a[i];
mat4f_t view;
mat4f_t proj;
switch (light->data & ShadowMask) {
default:
case ST_NONE:
case ST_CUBE:
mat4fidentity (view);
break;
case ST_CASCADE:
case ST_PLANE:
//FIXME will fail for -ref_direction
mat4fquat (view, qrotf (loadvec3f (light->direction),
ref_direction));
break;
}
VectorNegate (light->position, view[3]);
switch (light->data & ShadowMask) {
case ST_NONE:
mat4fidentity (proj);
break;
case ST_CUBE:
QFV_PerspectiveTan (proj, 1, 1);
break;
case ST_CASCADE:
// dependent on view fustrum and cascade level
mat4fidentity (proj);
break;
case ST_PLANE:
QFV_PerspectiveCos (proj, light->cone);
break;
}
mmulf (lctx->lightmats.a[i], proj, view);
}
}
static int
light_compare (const void *_l2, const void *_l1)
{
const qfv_light_t *l1 = _l1;
const qfv_light_t *l2 = _l2;
if (l1->light == l2->light) {
return (l1->data & ShadowMask) - (l2->data & ShadowMask);
}
return l1->light - l2->light;
}
static VkImage
create_map (int size, int layers, int cube, vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
if (layers < 6) {
cube = 0;
}
VkImageCreateInfo createInfo = {
VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, 0,
cube ? VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT : 0, VK_IMAGE_TYPE_2D,
VK_FORMAT_X8_D24_UNORM_PACK32,
{ size, size, 1 }, 1, layers,
VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT
| VK_IMAGE_USAGE_SAMPLED_BIT, VK_SHARING_MODE_EXCLUSIVE,
0, 0,
VK_IMAGE_LAYOUT_UNDEFINED,
};
VkImage image;
dfunc->vkCreateImage (device->dev, &createInfo, 0, &image);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_IMAGE, image,
va (ctx->va_ctx, "image:shadowmap:%d:%d",
size, layers));
return image;
}
static VkImageView
create_view (VkImage image, int baseLayer, int data, int id, vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
int layers = 0;
VkImageViewType type = 0;
const char *viewtype = 0;
switch (data & ShadowMask) {
case ST_NONE:
return 0;
case ST_PLANE:
layers = 1;
type = VK_IMAGE_VIEW_TYPE_2D;
viewtype = "plane";
break;
case ST_CASCADE:
layers = 4;
type = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
viewtype = "cascade";
break;
case ST_CUBE:
layers = 6;
type = VK_IMAGE_VIEW_TYPE_CUBE;
viewtype = "cube";
break;
}
VkImageViewCreateInfo createInfo = {
VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, 0,
0,
image, type, VK_FORMAT_X8_D24_UNORM_PACK32,
{
VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY,
},
{ VK_IMAGE_ASPECT_DEPTH_BIT, 0, 1, baseLayer, layers }
};
VkImageView view;
dfunc->vkCreateImageView (device->dev, &createInfo, 0, &view);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_IMAGE_VIEW, view,
va (ctx->va_ctx, "iview:shadowmap:%s:%d",
viewtype, id));
(void) viewtype;//silence unused warning when vulkan debug disabled
return view;
}
static void
build_shadow_maps (lightingctx_t *lctx, vulkan_ctx_t *ctx)
{
qfv_device_t *device = ctx->device;
qfv_devfuncs_t *dfunc = device->funcs;
qfv_physdev_t *physDev = device->physDev;
int maxLayers = physDev->properties.limits.maxImageArrayLayers;
qfv_light_t *lights = lctx->lights.a;
int numLights = lctx->lights.size;
int size = -1;
int numLayers = 0;
int totalLayers = 0;
int *imageMap = alloca (numLights * sizeof (int));
size_t memsize = 0;
DARRAY_RESIZE (&lctx->lightlayers, numLights);
qsort (lights, numLights, sizeof (qfv_light_t), light_compare);
for (int i = 0; i < numLights; i++) {
int shadow = lights[i].data & ShadowMask;
int layers = 1;
if (shadow == ST_CASCADE || shadow == ST_NONE) {
// cascade shadows will be handled separately, and "none" has no
// shadow map at all
imageMap[i] = -1;
continue;
}
if (shadow == ST_CUBE) {
layers = 6;
}
if (size != (int) lights[i].light || numLayers + layers > maxLayers) {
if (numLayers) {
VkImage shadow_map = create_map (size, numLayers, 1, ctx);
DARRAY_APPEND (&lctx->lightimages, shadow_map);
numLayers = 0;
}
size = lights[i].light;
}
imageMap[i] = lctx->lightimages.size;
lctx->lightlayers.a[i] = numLayers;
numLayers += layers;
totalLayers += layers;
}
if (numLayers) {
VkImage shadow_map = create_map (size, numLayers, 1, ctx);
DARRAY_APPEND (&lctx->lightimages, shadow_map);
}
numLayers = 0;
size = 1024;
for (int i = 0; i < numLights; i++) {
int shadow = lights[i].data & ShadowMask;
int layers = 4;
if (shadow != ST_CASCADE) {
continue;
}
if (numLayers + layers > maxLayers) {
VkImage shadow_map = create_map (size, numLayers, 0, ctx);
DARRAY_APPEND (&lctx->lightimages, shadow_map);
numLayers = 0;
}
imageMap[i] = lctx->lightimages.size;
lctx->lightlayers.a[i] = numLayers;
numLayers += layers;
totalLayers += layers;
}
if (numLayers) {
VkImage shadow_map = create_map (size, numLayers, 0, ctx);
DARRAY_APPEND (&lctx->lightimages, shadow_map);
}
for (size_t i = 0; i < lctx->lightimages.size; i++) {
memsize += QFV_GetImageSize (device, lctx->lightimages.a[i]);
}
lctx->shadow_memory = QFV_AllocImageMemory (device, lctx->lightimages.a[0],
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
memsize, 0);
QFV_duSetObjectName (device, VK_OBJECT_TYPE_DEVICE_MEMORY,
lctx->shadow_memory, "memory:shadowmap");
size_t offset = 0;
for (size_t i = 0; i < lctx->lightimages.size; i++) {
dfunc->vkBindImageMemory (device->dev, lctx->lightimages.a[i],
lctx->shadow_memory, offset);
offset += QFV_GetImageSize (device, lctx->lightimages.a[i]);
}
DARRAY_RESIZE (&lctx->lightviews, numLights);
for (int i = 0; i < numLights; i++) {
if (imageMap[i] == -1) {
lctx->lightviews.a[i] = 0;
continue;
}
lctx->lightviews.a[i] = create_view (lctx->lightimages.a[imageMap[i]],
lctx->lightlayers.a[i],
lctx->lights.a[i].data, i, ctx);
}
Sys_MaskPrintf (SYS_vulkan, "shadow maps: %d layers in %zd images: %zd\n",
totalLayers, lctx->lightimages.size, memsize);
}
static void
locate_lights (model_t *model, lightingctx_t *lctx)
{
qfv_light_t *lights = lctx->lights.a;
DARRAY_RESIZE (&lctx->lightleafs, lctx->lights.size);
for (size_t i = 0; i < lctx->lights.size; i++) {
mleaf_t *leaf = Mod_PointInLeaf (&lights[i].position[0], model);
lctx->lightleafs.a[i] = leaf - model->brush.leafs - 1;
}
}
void
Vulkan_LoadLights (model_t *model, const char *entity_data, vulkan_ctx_t *ctx)
{
lightingctx_t *lctx = ctx->lighting_context;
plitem_t *entities = 0;
lctx->lights.size = 0;
lctx->lightleafs.size = 0;
lctx->lightmats.size = 0;
if (lctx->sun_pvs) {
set_delete (lctx->sun_pvs);
}
lctx->sun_pvs = set_new_size (model->brush.visleafs);
for (size_t i = 0; i < ctx->frames.size; i++) {
__auto_type lframe = &lctx->frames.a[i];
if (lframe->pvs) {
set_delete (lframe->pvs);
}
lframe->pvs = set_new_size (model->brush.visleafs);
}
clear_shadows (ctx);
script_t *script = Script_New ();
Script_Start (script, "ent data", entity_data);
if (Script_GetToken (script, 1)) {
if (strequal (script->token->str, "(")) {
// new style (plist) entity data
entities = PL_GetPropertyList (entity_data, &ctx->hashlinks);
} else {
// old style entity data
Script_UngetToken (script);
// FIXME ED_ConvertToPlist aborts if an error is encountered.
entities = ED_ConvertToPlist (script, 0, &ctx->hashlinks);
}
}
Script_Delete (script);
if (entities) {
plitem_t *targets = PL_NewDictionary (&ctx->hashlinks);
// find all the targets so spotlights can be aimed
for (int i = 1; i < PL_A_NumObjects (entities); i++) {
plitem_t *entity = PL_ObjectAtIndex (entities, i);
const char *targetname = PL_String (PL_ObjectForKey (entity,
"targetname"));
if (targetname && !PL_ObjectForKey (targets, targetname)) {
PL_D_AddObject (targets, targetname, entity);
}
}
for (int i = 0; i < PL_A_NumObjects (entities); i++) {
plitem_t *entity = PL_ObjectAtIndex (entities, i);
const char *classname = PL_String (PL_ObjectForKey (entity,
"classname"));
if (!classname) {
continue;
}
if (strequal (classname, "worldspawn")) {
// parse_sun can add many lights
parse_sun (lctx, entity, model);
} else if (strnequal (classname, "light", 5)) {
qfv_light_t light = {};
parse_light (&light, entity, targets);
// some lights have 0 output, so drop them
if (light.light) {
DARRAY_APPEND (&lctx->lights, light);
}
}
}
for (size_t i = 0; i < ctx->frames.size; i++) {
lightingframe_t *lframe = &lctx->frames.a[i];
DARRAY_RESIZE (&lframe->lightvis, lctx->lights.size);
}
// targets does not own the objects, so need to remove them before
// freeing targets
for (int i = PL_D_NumKeys (targets); i-- > 0; ) {
PL_RemoveObjectForKey (targets, PL_KeyAtIndex (targets, i));
}
PL_Free (targets);
PL_Free (entities);
}
Sys_MaskPrintf (SYS_vulkan, "loaded %zd lights\n", lctx->lights.size);
build_shadow_maps (lctx, ctx);
create_light_matrices (lctx);
locate_lights (model, lctx);
for (size_t i = 0; i < lctx->lights.size; i++) {
dump_light (&lctx->lights.a[i], lctx->lightleafs.a[i],
lctx->lightmats.a[i]);
}
}