quakeforge/tools/qfvis/source/qfvis.c
Bill Currie dbd3d6502a Nuke qboolean from orbit
I never liked it, but with C2x coming out, it's best to handle bools
properly. I haven't gone through all the uses of int as bool (I'll leave
that for fixing when I encounter them), but this gets QF working with
both c2x (really, gnu2x because of raw strings).
2023-06-13 18:06:11 +09:00

1607 lines
40 KiB
C

/*
vis.c
PVS/PHS generation tool
Copyright (C) 1996-1997 Id Software, Inc.
Copyright (C) 2002 Colin Thompson
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif
#ifdef HAVE_IO_H
# include <io.h>
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <getopt.h>
#include <errno.h>
#include <stdlib.h>
#include <ctype.h>
#ifdef HAVE_PTHREAD_H
# include <pthread.h>
#endif
#include "QF/bspfile.h"
#include "QF/cmd.h"
#include "QF/cmem.h"
#include "QF/dstring.h"
#include "QF/mathlib.h"
#include "QF/msg.h"
#include "QF/quakefs.h"
#include "QF/sizebuf.h"
#include "QF/sys.h"
#include "tools/qfvis/include/vis.h"
#include "tools/qfvis/include/options.h"
#ifdef USE_PTHREADS
pthread_attr_t threads_attrib;
pthread_rwlock_t *global_lock;
pthread_rwlock_t *portal_locks;
pthread_rwlock_t *stats_lock;
#endif
bsp_t *bsp;
options_t options;
static threaddata_t main_thread;
static visstat_t global_stats;
unsigned long base_mightsee;
unsigned long base_selfcull;
unsigned long base_clustercull;
unsigned long base_clustertest;
unsigned long base_spherecull;
unsigned long base_spheretest;
unsigned long base_spherepass;
unsigned long base_windingcull;
unsigned long base_windingtest;
unsigned long base_windingpass;
static unsigned portal_count;
unsigned numportals;
unsigned portalclusters;
unsigned numrealleafs;
unsigned originalvismapsize;
int totalvis;
int count_sep;
int bitbytes; // (portalleafs + 63)>>3
int bitlongs;
int bitbytes_l; // (numrealleafs + 63)>>3
portal_t **portal_queue;
portal_t *portals;
cluster_t *clusters;
dstring_t *visdata;
byte *uncompressed; // [bitbytes * portalleafs]
uint32_t *leafcluster; // leaf to cluster mappings as read from .prt file
int *working; // per thread current portal #
int progress_tick;
static void
InitThreads (void)
{
#ifdef USE_PTHREADS
if (pthread_attr_init (&threads_attrib) == -1)
Sys_Error ("pthread_attr_create failed");
if (pthread_attr_setstacksize (&threads_attrib, 0x100000) == -1)
Sys_Error ("pthread_attr_setstacksize failed");
global_lock = malloc (sizeof (pthread_rwlock_t));
if (pthread_rwlock_init (global_lock, 0))
Sys_Error ("pthread_rwlock_init failed");
stats_lock = malloc (sizeof (pthread_rwlock_t));
if (pthread_rwlock_init (stats_lock, 0))
Sys_Error ("pthread_rwlock_init failed");
#else
// Unable to run multi-threaded, so force threadcount to 1
options.threads = 1;
#endif
}
static void
EndThreads (void)
{
#ifdef USE_PTHREADS
if (pthread_rwlock_destroy (global_lock) == -1)
Sys_Error ("pthread_rwlock_destroy failed");
free (global_lock);
if (pthread_rwlock_destroy (stats_lock) == -1)
Sys_Error ("pthread_rwlock_destroy failed");
free (stats_lock);
#endif
}
static vec4f_t
PlaneFromWinding (winding_t *winding)
{
vec4f_t plane;
vec4f_t v1, v2;
// calc plane using CW winding
v1 = winding->points[2] - winding->points[1];
v2 = winding->points[0] - winding->points[1];
plane = normalf (crossf (v2, v1));
// negative so dot(point, plane) includes -dist (point[3] = 1)
plane[3] = -dotf (winding->points[0], plane)[0];
return plane;
}
winding_t *
NewWinding (threaddata_t *thread, int points)
{
winding_t *winding;
unsigned size;
size = field_offset (winding_t, points[points]);
winding = Hunk_RawAlloc (thread->hunk, size);
memset (winding, 0, size);
winding->id = thread->winding_id++;
winding->thread = thread->id;
return winding;
}
winding_t *
CopyWinding (threaddata_t *thread, const winding_t *w)
{
unsigned size;
winding_t *copy;
size = field_offset (winding_t, points[w->numpoints]);
copy = Hunk_RawAlloc (thread->hunk, size);
memcpy (copy, w, size);
copy->original = false;
copy->id = thread->winding_id++;
copy->thread = thread->id;
return copy;
}
static winding_t *
NewFlippedWinding (threaddata_t *thread, const winding_t *w)
{
winding_t *flipped;
unsigned i;
flipped = NewWinding (thread, w->numpoints);
for (i = 0; i < w->numpoints; i++) {
flipped->points[w->numpoints - 1 - i] = w->points[i];
}
flipped->numpoints = w->numpoints;
return flipped;
}
static vec4i_t
signeps (vec4f_t dist)
{
#ifdef __SSE3__
const vec4f_t zero = {};
const vec4f_t eps = { ON_EPSILON, ON_EPSILON, ON_EPSILON, ON_EPSILON };
vec4f_t d = _mm_addsub_ps (zero, dist);
vec4i_t c = (d - eps) > 0;
c = (vec4i_t) _mm_hsub_epi32 ((__m128i) c, (__m128i) c);
return c;
#else
float d = dist[0];
int front = (d >= ON_EPSILON);
int back = (d <= -ON_EPSILON);
int i = front - back;
return (vec4i_t) { i, i, i, i };
#endif
}
static vec4f_t
split_edge (const vec4f_t *points, const vec4f_t *dists,
int ind1, int ind2, vec4f_t split)
{
vec4f_t p1 = points[ind1];
vec4f_t p2 = points[ind2];
vec4f_t d1 = dists[ind1];
vec4f_t d2 = dists[ind2];
// avoid nan/inf in w: d1's w is never 0 (would not be here if it was)
// so the multiply ensures d1.w - d2.w cannot be 0 and thus d1.w/diff
// will not result in division by 0
static const vec4f_t one = { 1, 1, 1, 0 };
vec4f_t d = d1 / (d1 - d2 * one);
vec4f_t mid = p1 + d * (p2 - p1);
// avoid roundoff error when possible by forcing the appropriate
// component to the split-plane's distance when the split-plane's
// normal is signed-canonical.
// "nan" because 0x7fffffff is nan when viewed as a float
static const vec4i_t onenan = {0x3f800000,0x3f800000,0x3f800000,~0u >> 1};
static const vec4i_t nan = { ~0u >> 1, ~0u >> 1, ~0u >> 1, ~0u >> 1};
vec4i_t x = ((vec4i_t) split & nan) == onenan;
// plane vector has -dist in w
vec4f_t y = (vec4f_t) ((vec4i_t) split & x) * -split[3];
#ifdef __SSE3__
mid = _mm_blendv_ps (mid, y, (__m128) x);
#else
mid = (vec4f_t) (((vec4i_t) y & x) | ((vec4i_t) mid & ~x));
#endif
// if (isnan (mid[0])) *(int *) 0 = 0;
return mid;
}
static inline unsigned __attribute__((const))
is_not_on (unsigned x)
{
return x & 1;
}
static inline unsigned __attribute__((const))
is_back (unsigned x)
{
return x & 2;
}
static inline unsigned __attribute__((const))
is_not_back (unsigned x)
{
return ~x & 2;
}
static inline unsigned __attribute__((const))
is_front (unsigned x)
{
return is_not_on (x) & (is_not_back (x) >> 1);
}
static inline unsigned __attribute__((const))
is_back_front (unsigned x, unsigned y)
{
return (is_back (x) >> 1) & is_front (y);
}
static inline unsigned __attribute__((const))
is_front_back (unsigned x, unsigned y)
{
return is_front (x) & (is_back (y) >> 1);
}
static inline unsigned __attribute__((const))
is_transition (unsigned x, unsigned y)
{
return is_back_front (x, y) | is_front_back (x, y);
}
static inline void
test_point (vec4f_t split, const vec4f_t *points, int index, vec4f_t *dists,
int *sides, unsigned *counts)
{
dists[index] = dotf (points[index], split);
sides[index] = signeps (dists[index])[0];
counts[sides[index]]++;
}
#undef SIDE_FRONT
#undef SIDE_BACK
#undef SIDE_ON
#define SIDE_FRONT 1
#define SIDE_BACK -1
#define SIDE_ON 0
/*
ClipWinding
Clips the winding to the plane, returning the new winding on the positive
side
Frees the input winding.
If keepon is true, an exactly on-plane winding will be saved, otherwise
it will be clipped away.
*/
winding_t *
ClipWinding (threaddata_t *thread, winding_t *in, vec4f_t split,
bool keepon)
{
unsigned maxpts = 0;
unsigned i;
unsigned _counts[3];
unsigned *const counts = _counts + 1;
int *const sides = alloca ((in->numpoints + 1) * sizeof (int));
vec4f_t *const dists = alloca ((in->numpoints + 1) * sizeof (vec4f_t));
winding_t *neww;
counts[SIDE_FRONT] = counts[SIDE_ON] = counts[SIDE_BACK] = 0;
// determine sides for each point
test_point (split, in->points, 0, dists, sides, counts);
for (i = 1; i < in->numpoints; i++) {
test_point (split, in->points, i, dists, sides, counts);
maxpts += is_transition (sides[i - 1], sides[i]);
}
sides[i] = sides[0];
dists[i] = dists[0];
maxpts += is_transition (sides[i - 1], sides[i]);
if (keepon && counts[SIDE_ON] == in->numpoints) {
return in;
}
if (!counts[SIDE_FRONT]) {
return NULL;
}
if (!counts[SIDE_BACK]) {
return in;
}
maxpts += in->numpoints - counts[SIDE_BACK];
neww = NewWinding (thread, maxpts);
for (i = 0; i < in->numpoints; i++) {
if (sides[i] == SIDE_ON) {
neww->points[neww->numpoints++] = in->points[i];
continue;
}
if (sides[i] == SIDE_FRONT) {
neww->points[neww->numpoints++] = in->points[i];
}
if (sides[i + 1] == SIDE_ON || sides[i + 1] == sides[i]) {
continue;
}
unsigned j = (i + 1) == in->numpoints ? 0 : i + 1;
vec4f_t mid = split_edge (in->points, dists, i, j, split);
neww->points[neww->numpoints++] = mid;
}
if (neww->numpoints < maxpts) {
Sys_Error ("ClipWinding: not all points copied: n:%u m:%u i:%u %u %u %u",
neww->numpoints, maxpts, in->numpoints,
counts[SIDE_BACK], counts[SIDE_ON], counts[SIDE_FRONT]);
}
if (neww->numpoints > maxpts) {
Sys_Error ("ClipWinding: points exceeded estimate: n:%u m:%u",
neww->numpoints, maxpts);
}
return neww;
}
static portal_t *
GetNextPortal (int limit)
{
portal_t *p = 0;
if (!(limit
&& options.portal_limit > 0
&& portal_count >= options.portal_limit)) {
WRLOCK (global_lock);
progress_tick++;
if (portal_count < 2 * numportals) {
p = portal_queue[portal_count++];
p->status = stat_selected;
}
UNLOCK (global_lock);
}
return p;
}
static void
UpdateMightsee (threaddata_t *thread, cluster_t *source, cluster_t *dest)
{
int i, clusternum;
portal_t *portal;
clusternum = dest - clusters;
for (i = 0; i < source->numportals; i++) {
portal = &source->portals[i];
WRLOCK_PORTAL (portal);
if (portal->status == stat_none) {
if (set_is_member (portal->mightsee, clusternum)) {
set_remove (portal->mightsee, clusternum);
portal->nummightsee--;
thread->stats.mightseeupdate++;
}
}
UNLOCK_PORTAL (portal);
}
}
static void
UpdateStats (threaddata_t *thread)
{
WRLOCK (stats_lock);
global_stats.portaltest += thread->stats.portaltest;
global_stats.portalpass += thread->stats.portalpass;
global_stats.portalcheck += thread->stats.portalcheck;
global_stats.targettested += thread->stats.targettested;
global_stats.targettrimmed += thread->stats.targettrimmed;
global_stats.targetclipped += thread->stats.targetclipped;
global_stats.sourcetested += thread->stats.sourcetested;
global_stats.sourcetrimmed += thread->stats.sourcetrimmed;
global_stats.sourceclipped += thread->stats.sourceclipped;
global_stats.chains += thread->stats.chains;
global_stats.mighttest += thread->stats.mighttest;
global_stats.vistest += thread->stats.vistest;
global_stats.mightseeupdate += thread->stats.mightseeupdate;
global_stats.sep_alloc += thread->stats.sep_alloc;
global_stats.sep_free += thread->stats.sep_free;
global_stats.winding_mark = max (global_stats.winding_mark,
thread->stats.winding_mark);
global_stats.stack_alloc += thread->stats.stack_alloc;
global_stats.stack_free += thread->stats.stack_free;
UNLOCK (stats_lock);
memset (&thread->stats, 0, sizeof (thread->stats));
}
static void
PortalCompleted (threaddata_t *thread, portal_t *completed)
{
portal_t *portal;
cluster_t *cluster;
set_t *changed;
set_iter_t *ci;
int i, j;
completed->status = stat_done;
changed = set_new_size_r (&thread->set_pool, portalclusters);
cluster = &clusters[completed->cluster];
for (i = 0; i < cluster->numportals; i++) {
portal = &cluster->portals[i];
if (portal->status != stat_done)
continue;
set_assign (changed, portal->mightsee);
set_difference (changed, portal->visbits);
#if 0
dstring_copystr (thread->str, "mightsee: ");
set_as_string_r (thread->str, portal->mightsee);
dstring_appendstr (thread->str, "\nvisbits: ");
set_as_string_r (thread->str, portal->visbits);
dstring_appendstr (thread->str, "\nchanged: ");
set_as_string_r (thread->str, changed);
dstring_appendstr (thread->str, "\n");
write (0, thread->str->str, thread->str->size - 1);
#endif
for (j = 0; j < cluster->numportals; j++) {
if (j == i)
continue;
if (cluster->portals[j].status == stat_done)
set_difference (changed, cluster->portals[j].visbits);
else
set_difference (changed, cluster->portals[j].mightsee);
}
for (ci = set_first_r (&thread->set_pool, changed); ci;
ci = set_next_r (&thread->set_pool, ci)) {
UpdateMightsee (thread, &clusters[ci->element], cluster);
}
}
set_delete_r (&thread->set_pool, changed);
UpdateStats (thread);
}
static void
dump_super_stats (int id, memsuper_t *super)
{
size_t total_size = 0;
size_t total_allocated = 0;
size_t total_post_size = 0;
size_t total_post_allocated = 0;
size_t num_blocks = 0;
size_t free_counts[MAX_CACHE_LINES];
for (memblock_t *block = super->memblocks; block; block = block->next) {
num_blocks++;
total_size += block->size;
total_allocated += block->allocated;
total_post_size += block->post_size;
// post_free is a flag
total_post_allocated += !block->post_free * block->post_size;
}
for (int i = 0; i < MAX_CACHE_LINES; i++) {
free_counts[i] = 0;
for (memline_t *line = super->free_lines[i]; line;
line = line->free_next) {
free_counts[i]++;
}
}
WRLOCK (global_lock);
printf ("cmem stats for thread %d\n", id);
printf (" blocks: %zd\n", num_blocks);
printf (" : s:%-8zd a:%-8zd f:%-8zd\n", total_size,
total_allocated, total_size - total_allocated);
printf (" post: s:%-8zd a:%-8zd f:%-8zd\n", total_post_size,
total_post_allocated, total_post_size - total_post_allocated);
printf (" ");
for (int i = 0; i < MAX_CACHE_LINES; i++) {
printf (" %5d", 64 << i);
}
printf ("\n");
printf (" ");
for (int i = 0; i < MAX_CACHE_LINES; i++) {
printf (" %5zd", free_counts[i]);
}
printf ("\n");
UNLOCK (global_lock);
}
static void *
LeafThread (void *_thread)
{
portal_t *portal;
int thread = (int) (intptr_t) _thread;
threaddata_t data;
int count = 0;
size_t thread_memsize = 1024 * 1024;
memset (&data, 0, sizeof (data));
data.hunk = Hunk_Init (Sys_Alloc (thread_memsize), thread_memsize);
set_pool_init (&data.set_pool);
data.id = thread;
data.memsuper = new_memsuper ();
data.str = dstring_new ();
do {
portal = GetNextPortal (1);
if (!portal)
break;
if (options.verbosity >= 3 && (!count++ % 16)) {
dump_super_stats (thread, data.memsuper);
}
if (working)
working[thread] = (int) (portal - portals);
PortalFlow (&data, portal);
int whm = data.stats.winding_mark;
int shw = data.stats.sep_highwater;
int smb = data.stats.sep_maxbulk;
PortalCompleted (&data, portal);
data.stats.sep_highwater = shw;
data.stats.sep_maxbulk = smb;
data.stats.winding_mark = whm;
if (options.verbosity >= 4)
printf ("portal:%5i mightsee:%5i cansee:%5i %5u/%u\n",
(int) (portal - portals),
portal->nummightsee,
portal->numcansee,
portal_count, numportals * 2);
} while (1);
if (options.verbosity >= 2) {
printf ("thread %d winding mark: %zd\n", thread,
data.stats.winding_mark);
printf ("thread %d separator highwater: %d\n", thread,
data.stats.sep_highwater);
printf ("thread %d separator maxbulk: %d\n", thread,
data.stats.sep_maxbulk);
}
if (options.verbosity >= 4)
printf ("thread %d done\n", thread);
if (working)
working[thread] = -1;
delete_memsuper (data.memsuper);
dstring_delete (data.str);
Sys_Free (data.hunk, thread_memsize);
return NULL;
}
static void *
BaseVisThread (void *_thread)
{
portal_t *portal;
int thread = (int) (intptr_t) _thread;
basethread_t data;
set_pool_t set_pool;
int num_mightsee = 0;
memset (&data, 0, sizeof (data));
data.id = thread;
set_pool_init (&set_pool);
data.portalsee = set_new_size_r (&set_pool, numportals * 2);
do {
portal = GetNextPortal (0);
if (!portal)
break;
if (working)
working[thread] = (int) (portal - portals);
portal->mightsee = set_new_size_r (&set_pool, portalclusters);
set_empty (data.portalsee);
PortalBase (&data, portal);
num_mightsee += data.clustersee;
data.clustersee = 0;
} while (1);
WRLOCK (stats_lock);
base_selfcull += data.selfcull;
base_clustercull += data.clustercull;
base_clustertest += data.clustertest;
base_spherecull += data.spherecull;
base_spheretest += data.spheretest;
base_spherepass += data.spherepass;
base_windingcull += data.windingcull;
base_windingtest += data.windingtest;
base_windingpass += data.windingpass;
base_mightsee += num_mightsee;
UNLOCK (stats_lock);
if (options.verbosity >= 4)
printf ("thread %d done\n", thread);
if (working)
working[thread] = -1;
return NULL;
}
#ifdef USE_PTHREADS
const char spinner[] = "|/-\\";
const char progress[] = "0....1....2....3....4....5....6....7....8....9....";
static void
print_thread_stats (const int *local_work, int thread, int spinner_ind)
{
int i;
for (i = 0; i < thread; i++)
printf ("%6d", local_work[i]);
printf (" %5u / %5u", portal_count, numportals * 2);
fflush (stdout);
printf (" %c\r", spinner[spinner_ind % 4]);
fflush (stdout);
}
static int
portal_progress (void)
{
return portal_count * 100 / (numportals * 2) + 1;
}
static int
print_progress (int prev_prog, int prog, int spinner_ind)
{
prog /= 2;
if (prog > prev_prog)
printf ("%.*s", prog - prev_prog, progress + prev_prog);
printf (" %c\b\b", spinner[spinner_ind % 4]);
fflush (stdout);
return prog;
}
typedef struct {
int thread;
int (*calc_progress)(void);
} watch_data_t;
static void *
WatchThread (void *_wd)
{
watch_data_t *wd = _wd;
int thread = wd->thread;
int *local_work = malloc (thread * sizeof (int));
int i;
int spinner_ind = 0;
int count = 0;
int prev_prog = 0;
int prev_tick = 0;
int stalled = 0;
while (1) {
usleep (1000);
for (i = 0; i < thread; i ++)
if (working[i] >= 0)
break;
if (i == thread)
break;
if (count++ == 50) {
count = 0;
for (i = 0; i < thread; i ++)
local_work[i] = working[i];
if (options.verbosity >= 4)
print_thread_stats (local_work, thread, spinner_ind);
else if (options.verbosity >= 0) {
prev_prog = print_progress (prev_prog, wd->calc_progress (),
spinner_ind);
}
if (prev_tick != progress_tick || stalled++ == 20) {
prev_tick = progress_tick;
stalled = 0;
spinner_ind++;
}
}
}
if (options.verbosity >= 4) {
printf ("watch thread done\n");
} else if (options.verbosity >= 0) {
prev_prog = print_progress (prev_prog, wd->calc_progress (),
spinner_ind);
}
free (local_work);
return NULL;
}
#endif
static double
thread_start (const char *msg)
{
if (options.verbosity >= 0) {
printf ("%-10.10s: ", msg);
}
if (options.verbosity >= 4) {
printf ("\n");
}
return Sys_DoubleTime ();
}
static void
thread_end (double start)
{
double end = Sys_DoubleTime ();
double duration = end - start;
if (options.verbosity >= 0) {
if (duration >= 1.2) {
printf (" %5.1fs", duration);
} else {
printf (" %5.1fms", duration * 1000);
}
}
printf ("\n");
}
void
RunThreads (const char *heading, void *(*thread_func) (void *),
int (*calc_progress)(void))
{
#ifdef USE_PTHREADS
pthread_t *work_threads;
void *status;
int i;
double start;
if (options.threads > 1) {
work_threads = alloca ((options.threads + 1) * sizeof (pthread_t *));
working = calloc (options.threads, sizeof (int));
start = thread_start (heading);
for (i = 0; i < options.threads; i++) {
if (pthread_create (&work_threads[i], &threads_attrib,
thread_func, (void *) (intptr_t) i) == -1)
Sys_Error ("pthread_create failed");
}
watch_data_t wd = { i, calc_progress };
if (pthread_create (&work_threads[i], &threads_attrib,
WatchThread, &wd) == -1)
Sys_Error ("pthread_create failed");
for (i = 0; i < options.threads; i++) {
if (pthread_join (work_threads[i], &status) == -1)
Sys_Error ("pthread_join failed");
}
if (pthread_join (work_threads[i], &status) == -1)
Sys_Error ("pthread_join failed");
thread_end (start);
free (working);
} else {
start = thread_start (heading);
thread_func (0);
thread_end (start);
}
#else
thread_func (0);
#endif
}
int
CompressRow (sizebuf_t *dest, const byte *vis, unsigned num_leafs, int utf8)
{
int rep, visrow, j;
byte *dest_p;
// if we ever need 2GB (32Gb) of vis data for a single leaf...
int maxrep = utf8 ? 0x7fffffff : 255;
dest_p = dest->data;
visrow = (num_leafs + 7) >> 3;
for (j = 0; j < visrow; j++) {
*dest_p++ = vis[j];
if (vis[j])
continue;
rep = 1;
for (j++; j < visrow; j++)
if (vis[j] || rep == maxrep)
break;
else
rep++;
if (utf8) {
dest->cursize = dest_p - dest->data;
MSG_WriteUTF8 (dest, rep);
dest_p = dest->data + dest->cursize;
} else {
*dest_p++ = rep;
}
j--;
}
dest->cursize = dest_p - dest->data;
return dest->cursize;
}
static void
ClusterFlowExpand (const set_t *src, byte *dest)
{
unsigned i, j;
for (j = 1, i = 0; i < numrealleafs; i++) {
if (set_is_member (src, leafcluster[i]))
*dest |= j;
j <<= 1;
if (j == 256) {
j = 1;
dest++;
}
}
}
static sizebuf_t *compressed_vis;
/*
ClusterFlow
Builds the entire visibility list for a cluster
*/
void
ClusterFlow (int clusternum)
{
set_t visclusters = SET_STATIC_INIT (portalclusters, alloca);
sizebuf_t *compressed = &compressed_vis[clusternum];
byte *outbuffer;
int numvis, i;
cluster_t *cluster;
portal_t *portal;
outbuffer = uncompressed + clusternum * bitbytes_l;
cluster = &clusters[clusternum];
set_empty (&visclusters);
// flow through all portals, collecting visible bits
for (i = 0; i < cluster->numportals; i++) {
portal = &cluster->portals[i];
if (portal->status != stat_done)
Sys_Error ("portal not done");
if (set_is_member (portal->visbits, clusternum)) {
//printf ("cluster %d saw into self via portal %d\n",
// clusternum, (int) (portal - portals));
}
set_union (&visclusters, portal->visbits);
}
set_add (&visclusters, clusternum);
numvis = set_count (&visclusters);
// expand to cluster->leaf PVS
ClusterFlowExpand (&visclusters, outbuffer);
// compress the bit string
if (options.verbosity >= 4)
printf ("cluster %4i : %4i visible\n", clusternum, numvis);
totalvis += numvis;
CompressRow (compressed, outbuffer, numrealleafs, 0);
}
static unsigned work_cluster;
static int
flow_progress (void)
{
return work_cluster * 100 / portalclusters;
}
static unsigned
next_cluster (void)
{
unsigned cluster = ~0;
WRLOCK (global_lock);
progress_tick++;
if (work_cluster < portalclusters) {
cluster = work_cluster++;
}
UNLOCK (global_lock);
return cluster;
}
static void *
FlowClusters (void *d)
{
int thread = (intptr_t) d;
while (1) {
unsigned clusternum = next_cluster ();
if (working) {
working[thread] = clusternum;
}
if (clusternum == ~0u) {
break;
}
ClusterFlow (clusternum);
}
return 0;
}
static void
CompactPortalVis (void)
{
compressed_vis = malloc (portalclusters * sizeof (sizebuf_t));
for (unsigned i = 0; i < portalclusters; i++) {
compressed_vis[i] = (sizebuf_t) {
.maxsize = (bitbytes_l * 3) / 2,
.data = malloc ((bitbytes_l * 3) / 2)
};
}
RunThreads ("Comp vis", FlowClusters, flow_progress);
for (unsigned i = 0; i < portalclusters; i++) {
unsigned size = compressed_vis[i].cursize;
clusters[i].visofs = visdata->size;
dstring_append (visdata, (char *) compressed_vis[i].data, size);
}
}
static int
portalcmp (const void *_a, const void *_b)
{
portal_t *a = *(portal_t **) _a;
portal_t *b = *(portal_t **) _b;
return a->nummightsee - b->nummightsee;
}
static void
BasePortalVis (void)
{
double start, end;
start = Sys_DoubleTime ();
RunThreads ("Base vis", BaseVisThread, portal_progress);
end = Sys_DoubleTime ();
if (options.verbosity >= 1) {
unsigned long n = numportals;
printf ("base_mightsee: %lu %gs\n", base_mightsee, end - start);
printf ("\n");
printf (" total tests: %lu\n", n * n * 4);
printf ("cluster test: %lu\n", base_clustertest);
printf ("cluster cull: %lu\n", base_clustercull);
printf (" self cull: %lu\n", base_selfcull);
printf (" sphere test: %lu\n", base_spheretest);
printf (" sphere cull: %lu\n", base_spherecull);
printf (" sphere pass: %lu\n", base_spherepass);
printf ("winding test: %lu\n", base_windingtest);
printf ("winding cull: %lu\n", base_windingcull);
printf ("winding pass: %lu\n", base_windingpass);
}
}
static void
CalcPortalVis (void)
{
unsigned i;
double start, end;
// fastvis just uses mightsee for a very loose bound
if (options.minimal) {
for (i = 0; i < numportals * 2; i++) {
portals[i].visbits = portals[i].mightsee;
portals[i].status = stat_done;
}
return;
}
start = Sys_DoubleTime ();
qsort (portal_queue, numportals * 2, sizeof (portal_t *), portalcmp);
end = Sys_DoubleTime ();
if (options.verbosity >= 1)
printf ("qsort: %gs\n", end - start);
portal_count = 0;
RunThreads ("Full vis", LeafThread, portal_progress);
if (options.verbosity >= 1) {
printf ("portalcheck: %ld portaltest: %ld portalpass: %ld\n",
global_stats.portalcheck, global_stats.portaltest,
global_stats.portalpass);
printf ("target trimmed: %ld clipped: %ld tested: %ld\n",
global_stats.targettrimmed, global_stats.targetclipped,
global_stats.targettested);
printf ("source trimmed: %ld clipped: %ld tested: %ld\n",
global_stats.sourcetrimmed, global_stats.sourceclipped,
global_stats.sourcetested);
printf ("vistest: %ld mighttest: %ld mightseeupdate: %ld\n",
global_stats.vistest, global_stats.mighttest,
global_stats.mightseeupdate);
if (options.verbosity >= 2) {
printf ("separators allocated: %u freed: %u %u\n",
global_stats.sep_alloc, global_stats.sep_free,
global_stats.sep_alloc - global_stats.sep_free);
printf ("max windings mark: %zd\n", global_stats.winding_mark);
printf ("stack blocks allocated: %u freed: %u %u\n",
global_stats.stack_alloc, global_stats.stack_free,
global_stats.stack_alloc - global_stats.stack_free);
}
}
}
static void
CalcVis (void)
{
unsigned i;
printf ("Thread count: %d\n", options.threads);
BasePortalVis ();
for (i = 0; i < 2 * numportals; i++) {
portals[i].status = stat_none;
}
CalcPortalVis ();
// assemble the leaf vis lists by oring and compressing the portal lists
CompactPortalVis ();
for (i = 0; i < numrealleafs; i++) {
bsp->leafs[i + 1].visofs = clusters[leafcluster[i]].visofs;
}
if (options.verbosity >= 0)
printf ("average clusters visible: %u\n", totalvis / portalclusters);
}
static void
CalcClusterSpheres (void)
{
memhunk_t *hunk = main_thread.hunk;
for (unsigned i = 0; i < portalclusters; i++) {
cluster_t *cluster = &clusters[i];
int vertcount = 0;
for (int j = 0; j < cluster->numportals; j++) {
vertcount += cluster->portals[j].winding->numpoints;
}
size_t mark = Hunk_LowMark (hunk);
vec4f_t *verts = Hunk_RawAlloc (hunk, vertcount * sizeof (vec4f_t));
vertcount = 0;
for (int j = 0; j < cluster->numportals; j++) {
memcpy (verts + vertcount, cluster->portals[j].winding->points,
cluster->portals[j].winding->numpoints * sizeof (vec4f_t));
vertcount += cluster->portals[j].winding->numpoints;
}
cluster->sphere = SmallestEnclosingBall_vf (verts, vertcount);
Hunk_RawFreeToLowMark (hunk, mark);
}
}
#if 0
static bool
PlaneCompare (plane_t *p1, plane_t *p2)
{
int i;
if (fabs (p1->dist - p2->dist) > 0.01)
return false;
for (i = 0; i < 3; i++)
if (fabs (p1->normal[i] - p2->normal[i]) > 0.001)
return false;
return true;
}
static sep_t *
FindPassages (winding_t *source, winding_t *pass)
{
double length;
float d;
int i, j, k, l;
int counts[3];
plane_t plane;
bool fliptest;
sep_t *sep, *list;
vec3_t v1, v2;
list = NULL;
// check all combinations
for (i = 0; i < source->numpoints; i++) {
l = (i + 1) % source->numpoints;
VectorSubtract (source->points[l], source->points[i], v1);
// find a vertex of pass that makes a plane that puts all of the
// vertexes of pass on the front side and all of the vertexes of
// source on the back side
for (j = 0; j < pass->numpoints; j++) {
VectorSubtract (pass->points[j], source->points[i], v2);
plane.normal[0] = v1[1] * v2[2] - v1[2] * v2[1];
plane.normal[1] = v1[2] * v2[0] - v1[0] * v2[2];
plane.normal[2] = v1[0] * v2[1] - v1[1] * v2[0];
// if points don't make a valid plane, skip it
length = plane.normal[0] * plane.normal[0] +
plane.normal[1] * plane.normal[1] +
plane.normal[2] * plane.normal[2];
if (length < ON_EPSILON)
continue;
length = 1 / sqrt(length);
plane.normal[0] *= length;
plane.normal[1] *= length;
plane.normal[2] *= length;
plane.dist = DotProduct (pass->points[j], plane.normal);
// find out which side of the generated seperating plane has the
// source portal
fliptest = false;
for (k = 0; k < source->numpoints; k++) {
if (k == i || k == l)
continue;
d = DotProduct (source->points[k], plane.normal) - plane.dist;
if (d < -ON_EPSILON) {
// source is on the negative side, so we want all
// pass and target on the positive side
fliptest = false;
break;
} else if (d > ON_EPSILON) {
// source is on the positive side, so we want all
// pass and target on the negative side
fliptest = true;
break;
}
}
if (k == source->numpoints)
continue; // planar with source portal
// flip the normal if the source portal is backwards
if (fliptest) {
VectorNegate (plane.normal, plane.normal);
plane.dist = -plane.dist;
}
// if all of the pass portal points are now on the positive side,
// this is the seperating plane
counts[0] = counts[1] = counts[2] = 0;
for (k = 0; k < pass->numpoints; k++) {
if (k == j)
continue;
d = DotProduct (pass->points[k], plane.normal) - plane.dist;
if (d < -ON_EPSILON)
break;
else if (d > ON_EPSILON)
counts[0]++;
else
counts[2]++;
}
if (k != pass->numpoints)
continue; // points on negative side, not a seperating plane
if (!counts[0])
continue; // planar with pass portal
// save this out
count_sep++;
sep = malloc (sizeof (*sep));
sep->next = list;
list = sep;
sep->plane = plane;
}
}
return list;
}
static void
CalcPassages (void)
{
int count, count2, i, j, k;
leaf_t *leaf;
portal_t *p1, *p2;
sep_t *sep;
passage_t *passages;
if (options.verbosity >= 0)
printf ("building passages...\n");
count = count2 = 0;
for (i = 0; i < portalleafs; i++) {
leaf = &leafs[i];
for (j = 0; j < leaf->numportals; j++) {
p1 = leaf->portals[j];
for (k = 0; k < leaf->numportals; k++) {
if (k == j)
continue;
count++;
p2 = leaf->portals[k];
// definately can't see into a coplanar portal
if (PlaneCompare (&p1->plane, &p2->plane))
continue;
count2++;
sep = FindPassages (p1->winding, p2->winding);
if (!sep) {
count_sep++;
sep = malloc (sizeof (*sep));
sep->next = NULL;
sep->plane = p1->plane;
}
passages = malloc (sizeof (*passages));
passages->planes = sep;
passages->from = p1->leaf;
passages->to = p2->leaf;
passages->next = leaf->passages;
leaf->passages = passages;
}
}
}
if (options.verbosity >= 0) {
printf ("numpassages: %i (%i)\n", count2, count);
printf ("total passages: %i\n", count_sep);
}
}
#endif
static winding_t *
parse_winding (const char *line, int numpoints)
{
winding_t *winding = NewWinding (&main_thread, numpoints);
winding->original = true;
winding->numpoints = numpoints;
for (int i = 0; i < numpoints; i++) {
// (%ld %ld %ld)
while (isspace ((byte) *line))
line++;
if (*line++ != '(') {
return 0;
}
for (int j = 0; j < 3; j++) {
char *err;
winding->points[i][j] = strtod (line, &err);
if (err == line) {
return 0;
}
line = err;
}
winding->points[i][3] = 1;
while (isspace ((byte) *line))
line++;
if (*line++ != ')') {
return 0;
}
}
return winding;
}
static void
LoadPortals (char *name)
{
typedef struct {
unsigned clusters[2];
} clusterpair_t;
const char *line;
char *err;
unsigned numpoints;
int read_leafs = 0;
vec4f_t plane;
vspheref_t sphere;
QFile *f;
clusterpair_t *clusternums;
if (!strcmp (name, "-"))
f = Qdopen (0, "rt"); // create a QFile of stdin
else {
f = Qopen (name, "r");
if (!f) {
printf ("LoadPortals: couldn't read %s\n", name);
printf ("No vising performed.\n");
exit (1);
}
}
line = Qgetline (f);
if (line && (!strcmp (line, PORTALFILE "\n")
|| !strcmp (line, PORTALFILE "\r\n"))) {
line = Qgetline (f);
if (!line || sscanf (line, "%u\n", &portalclusters) != 1)
Sys_Error ("LoadPortals: failed to read header");
line = Qgetline (f);
if (!line || sscanf (line, "%u\n", &numportals) != 1)
Sys_Error ("LoadPortals: failed to read header");
numrealleafs = portalclusters;
} else if (line && (!strcmp (line, PORTALFILE_AM "\n")
|| !strcmp (line, PORTALFILE_AM "\r\n"))) {
line = Qgetline (f);
if (!line || sscanf (line, "%u\n", &portalclusters) != 1)
Sys_Error ("LoadPortals: failed to read header");
line = Qgetline (f);
if (!line || sscanf (line, "%u\n", &numportals) != 1)
Sys_Error ("LoadPortals: failed to read header");
line = Qgetline (f);
if (!line || sscanf (line, "%u\n", &numrealleafs) != 1)
Sys_Error ("LoadPortals: failed to read header");
read_leafs = 1;
} else if (line && (!strcmp (line, PORTALFILE2 "\n")
|| !strcmp (line, PORTALFILE2 "\r\n"))) {
line = Qgetline (f);
if (!line || sscanf (line, "%u\n", &numrealleafs) != 1)
Sys_Error ("LoadPortals: failed to read header");
line = Qgetline (f);
if (!line || sscanf (line, "%u\n", &portalclusters) != 1)
Sys_Error ("LoadPortals: failed to read header");
line = Qgetline (f);
if (!line || sscanf (line, "%u\n", &numportals) != 1)
Sys_Error ("LoadPortals: failed to read header");
read_leafs = 1;
} else {
Sys_Error ("LoadPortals: not a portal file");
}
if (options.verbosity >= 0) {
printf ("%4u portalclusters\n", portalclusters);
printf ("%4u numportals\n", numportals);
printf ("%4u numrealleafs\n", numrealleafs);
}
bitbytes = ((portalclusters + 63) & ~63) >> 3;
bitlongs = bitbytes / sizeof (long);
bitbytes_l = ((numrealleafs + 63) & ~63) >> 3;
// each file portal is split into two memory portals, one for each
// direction
portals = calloc (2 * numportals, sizeof (portal_t));
portal_queue = malloc (2 * numportals * sizeof (portal_t *));
for (unsigned i = 0; i < 2 * numportals; i++) {
portal_queue[i] = &portals[i];
}
#ifdef USE_PTHREADS
portal_locks = calloc (2 * numportals, sizeof (pthread_rwlock_t));
for (unsigned i = 0; i < 2 * numportals; i++) {
if (pthread_rwlock_init (&portal_locks[i], 0))
Sys_Error ("pthread_rwlock_init failed");
}
#endif
clusters = calloc (portalclusters, sizeof (cluster_t));
originalvismapsize = numrealleafs * ((numrealleafs + 7) / 8);
clusternums = calloc (numportals, sizeof (clusterpair_t));
winding_t **windings = malloc (numportals * sizeof (winding_t *));
for (unsigned i = 0; i < numportals; i++) {
line = Qgetline (f);
if (!line)
Sys_Error ("LoadPortals: reading portal %u", i);
numpoints = strtol (line, &err, 10);
if (err == line)
Sys_Error ("LoadPortals: reading portal %u", i);
line = err;
for (int j = 0; j < 2; j++) {
clusternums[i].clusters[j] = strtoul (line, &err, 10);
if (err == line)
Sys_Error ("LoadPortals: reading portal %u", i);
line = err;
if (clusternums[i].clusters[j] > portalclusters)
Sys_Error ("LoadPortals: reading portal %u", i);
}
clusters[clusternums[i].clusters[0]].numportals++;
clusters[clusternums[i].clusters[1]].numportals++;
if (!(windings[i] = parse_winding (line, numpoints))) {
Sys_Error ("LoadPortals: reading portal %u", i);
}
}
clusters[0].portals = portals;
for (unsigned i = 1; i < portalclusters; i++) {
portal_t *portal = clusters[i - 1].portals;
clusters[i].portals = portal + clusters[i - 1].numportals;
clusters[i - 1].numportals = 0;
}
clusters[portalclusters - 1].numportals = 0;
for (unsigned i = 0; i < numportals; i++) {
winding_t *winding = windings[i];
cluster_t *cluster;
portal_t *portal;
sphere = SmallestEnclosingBall_vf(winding->points, winding->numpoints);
//printf (VEC4F_FMT" %.9g\n", VEC4_EXP (sphere.center), sphere.radius);
// calc plane
plane = PlaneFromWinding (winding);
// create forward portal
cluster = &clusters[clusternums[i].clusters[0]];
portal = &cluster->portals[cluster->numportals++];
portal->plane = -plane; // plane is for CW, portal is CCW
portal->sphere = sphere;
portal->cluster = clusternums[i].clusters[1];
portal->winding = winding;
// Use a flipped winding for the reverse portal so the winding
// direction and plane normal match.
winding = NewFlippedWinding (&main_thread, winding); // **
winding->original = true;
// create backwards portal
cluster = &clusters[clusternums[i].clusters[1]];
portal = &cluster->portals[cluster->numportals++];
portal->plane = plane;
portal->sphere = sphere;
portal->cluster = clusternums[i].clusters[0];
portal->winding = winding;
}
free (clusternums);
free (windings);
leafcluster = calloc (numrealleafs, sizeof (uint32_t));
if (read_leafs) {
for (unsigned i = 0; i < numrealleafs; i++) {
line = Qgetline (f);
if (sscanf (line, "%i\n", &leafcluster[i]) != 1)
Sys_Error ("LoadPortals: parse error in leaf->cluster "
"mappings");
}
} else {
for (unsigned i = 0; i < numrealleafs; i++)
leafcluster[i] = i;
}
Qclose (f);
}
static void
generate_pvs (void)
{
QFile *f;
dstring_t *portalfile = dstring_new ();
dstring_t *backupfile = dstring_new ();
visdata = dstring_new ();
dstring_copystr (portalfile, options.bspfile->str);
QFS_SetExtension (portalfile, ".prt");
LoadPortals (portalfile->str);
uncompressed = calloc (bitbytes_l, portalclusters);
CalcClusterSpheres ();
CalcVis ();
if (options.verbosity >= 1)
printf ("chains: %ld%s\n", global_stats.chains,
options.threads > 1 ? " (not reliable)" :"");
BSP_AddVisibility (bsp, (byte *) visdata->str, visdata->size);
if (options.verbosity >= 0)
printf ("visdatasize:%ld compressed from %ld\n",
(long) bsp->visdatasize, (long) originalvismapsize);
CalcAmbientSounds ();
dstring_copystr (backupfile, options.bspfile->str);
QFS_SetExtension (backupfile, ".bsp~");
Qrename (options.bspfile->str, backupfile->str);
f = Qopen (options.bspfile->str, "wb");
if (!f)
Sys_Error ("couldn't open %s for writing.", options.bspfile->str);
WriteBSPFile (bsp, f);
Qclose (f);
dstring_delete (backupfile);
dstring_delete (portalfile);
dstring_delete (visdata);
dstring_delete (options.bspfile);
free (leafcluster);
free (uncompressed);
free (portals);
free (clusters);
}
int
main (int argc, char **argv)
{
double start, stop;
QFile *f;
size_t main_memsize = 128 * 1024 * 1024;
main_thread.memsuper = new_memsuper ();
main_thread.hunk = Hunk_Init (Sys_Alloc (main_memsize), main_memsize);
start = Sys_DoubleTime ();
this_program = argv[0];
DecodeArgs (argc, argv);
InitThreads ();
if (!options.bspfile) {
usage (1);
Sys_Error ("%s: no bsp file specified.", this_program);
}
QFS_SetExtension (options.bspfile, ".bsp");
f = Qopen (options.bspfile->str, "rb");
if (!f)
Sys_Error ("couldn't open %s for reading.", options.bspfile->str);
bsp = LoadBSPFile (f, Qfilesize (f));
Qclose (f);
if (!options.no_auto_pvs) {
generate_pvs ();
}
if (options.fat_pvs) {
CalcFatPVS ();
}
BSP_Free (bsp);
EndThreads ();
stop = Sys_DoubleTime ();
if (options.verbosity >= -1)
printf ("%5.1f seconds elapsed\n", stop - start);
return 0;
}