mirror of
https://git.code.sf.net/p/quake/quakeforge
synced 2025-02-26 05:31:50 +00:00
When the number of supplied vectors matches the number of columns in the matrix and all vectors have the same width as the number of rows in the matrix, there's no need to expand the vectors into components only to be gathered again.
264 lines
7 KiB
C
264 lines
7 KiB
C
/*
|
|
expr_construct.c
|
|
|
|
type constructor expressions
|
|
|
|
Copyright (C) 2024 Bill Currie <bill@taniwha.org>
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to:
|
|
|
|
Free Software Foundation, Inc.
|
|
59 Temple Place - Suite 330
|
|
Boston, MA 02111-1307, USA
|
|
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
# include "config.h"
|
|
#endif
|
|
#include <string.h>
|
|
|
|
#include "tools/qfcc/include/algebra.h"
|
|
#include "tools/qfcc/include/diagnostic.h"
|
|
#include "tools/qfcc/include/expr.h"
|
|
#include "tools/qfcc/include/rua-lang.h"
|
|
#include "tools/qfcc/include/symtab.h"
|
|
#include "tools/qfcc/include/type.h"
|
|
#include "tools/qfcc/include/value.h"
|
|
|
|
static const expr_t *
|
|
get_value (const expr_t *e, int i, int j)
|
|
{
|
|
auto t = get_type (e);
|
|
|
|
if (i < 0 || i >= type_cols (t) || j < 0 || j >= type_rows (t)) {
|
|
internal_error (e, "invalid index");
|
|
}
|
|
if (type_cols (t) > 1) {
|
|
auto ind = new_int_expr (i, false);
|
|
auto a = new_array_expr (e, ind);
|
|
a->array.type = column_type (t);
|
|
e = a;
|
|
}
|
|
if (type_rows (t) > 1) {
|
|
auto ind = new_int_expr (j, false);
|
|
auto a = new_array_expr (e, ind);
|
|
a->array.type = base_type (t);
|
|
e = a;
|
|
}
|
|
return e;
|
|
}
|
|
|
|
static const expr_t *
|
|
construct_by_components (const type_t *type, const expr_t *params,
|
|
const expr_t *e)
|
|
{
|
|
auto base = base_type (type);
|
|
int num_comp = type_rows (type) * type_cols (type);
|
|
const expr_t *components[num_comp] = {};
|
|
|
|
int num_param = list_count (¶ms->list);
|
|
const expr_t *param_exprs[num_param + 1] = {};
|
|
list_scatter_rev (¶ms->list, param_exprs);
|
|
|
|
bool all_constant = true;
|
|
bool all_implicit = true;
|
|
|
|
int c = 0, p = 0;
|
|
int err = -1;
|
|
while (c < num_comp) {
|
|
if (p < num_param) {
|
|
auto pexpr = param_exprs[p++];
|
|
auto ptype = get_type (pexpr);
|
|
if (!ptype) {
|
|
continue;
|
|
}
|
|
if (is_reference (ptype)) {
|
|
pexpr = pointer_deref (pexpr);
|
|
ptype = dereference_type (ptype);
|
|
}
|
|
if (!is_math (ptype)) {
|
|
err = c++;
|
|
components[err] = error (pexpr, "invalid type for conversion");
|
|
continue;
|
|
}
|
|
for (int i = 0; i < type_cols (ptype) && c < num_comp; i++) {
|
|
for (int j = 0; j < type_rows (ptype) && c < num_comp; j++) {
|
|
auto val = get_value (pexpr, i, j);
|
|
all_implicit = all_implicit && val->implicit;
|
|
all_constant = all_constant && is_constant (val);
|
|
components[c++] = cast_expr (base, val);
|
|
}
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
if (err >= 0) {
|
|
return components[err];
|
|
}
|
|
if (c < num_comp) {
|
|
return error (e, "too few parameters for %s", type->name);
|
|
}
|
|
if (p < num_param) {
|
|
return error (e, "too may parameters for %s", type->name);
|
|
}
|
|
if (num_comp == 1) {
|
|
return components[0];
|
|
}
|
|
if (all_constant) {
|
|
if (is_matrix (type)) {
|
|
return new_matrix_value (base, type_cols (type), type_rows (type),
|
|
num_comp, components, all_implicit);
|
|
} else {
|
|
return new_vector_value (base, type_width (type),
|
|
num_comp, components, all_implicit);
|
|
}
|
|
}
|
|
|
|
auto vec = new_expr ();
|
|
vec->type = ex_vector;
|
|
vec->vector.type = type;
|
|
if (is_matrix (type)) {
|
|
const expr_t *columns[type_cols (type)];
|
|
const expr_t **col = components;
|
|
for (int i = 0; i < type_cols (type); i++) {
|
|
auto c = new_expr ();
|
|
c->type = ex_vector;
|
|
c->vector.type = column_type (type);
|
|
list_gather (&c->vector.list, col, type_rows (type));
|
|
columns[i] = c;
|
|
col += type_rows (type);
|
|
}
|
|
list_gather (&vec->vector.list, columns, type_cols (type));
|
|
} else {
|
|
list_gather (&vec->vector.list, components, num_comp);
|
|
}
|
|
return vec;
|
|
}
|
|
|
|
static const expr_t *
|
|
construct_diagonal (const type_t *type, const expr_t *scalar, const expr_t *e)
|
|
{
|
|
scoped_src_loc (scalar);
|
|
int cols = type_cols (type);
|
|
int rows = type_rows (type);
|
|
const expr_t *components[cols * rows + 1] = {};
|
|
auto zero = new_nil_expr ();
|
|
|
|
for (int i = 0; i < cols; i++) {
|
|
for (int j = 0; j < rows; j++) {
|
|
components[i * rows + j] = i == j ? scalar : zero;
|
|
}
|
|
}
|
|
auto params = new_list_expr (nullptr);
|
|
list_gather (¶ms->list, components, cols * rows);
|
|
return construct_by_components (type, params, e);
|
|
}
|
|
|
|
static const expr_t *
|
|
construct_matrix (const type_t *type, const expr_t *matrix, const expr_t *e)
|
|
{
|
|
scoped_src_loc (matrix);
|
|
int cols = type_cols (type);
|
|
int rows = type_rows (type);
|
|
int src_cols = type_cols (get_type (matrix));
|
|
int src_rows = type_rows (get_type (matrix));
|
|
const expr_t *components[cols * rows + 1] = {};
|
|
auto zero = new_nil_expr ();
|
|
|
|
for (int i = 0; i < cols; i++) {
|
|
for (int j = 0; j < rows; j++) {
|
|
const expr_t *val;
|
|
if (i < src_cols && j < src_rows) {
|
|
val = get_value (matrix, i, j);
|
|
} else {
|
|
val = zero;
|
|
}
|
|
components[i * rows + j] = val;
|
|
}
|
|
}
|
|
auto params = new_list_expr (nullptr);
|
|
list_gather (¶ms->list, components, cols * rows);
|
|
return construct_by_components (type, params, e);
|
|
}
|
|
|
|
static const expr_t *
|
|
construct_broadcast (const type_t *type, const expr_t *scalar, const expr_t *e)
|
|
{
|
|
scoped_src_loc (scalar);
|
|
int width = type_width (type);
|
|
const expr_t *components[width + 1] = {};
|
|
|
|
for (int i = 0; i < width; i++) {
|
|
components[i] = scalar;
|
|
}
|
|
auto params = new_list_expr (nullptr);
|
|
list_gather (¶ms->list, components, width);
|
|
return construct_by_components (type, params, e);
|
|
}
|
|
|
|
static const expr_t *
|
|
math_constructor (const type_t *type, const expr_t *params, const expr_t *e)
|
|
{
|
|
int num_param = list_count (¶ms->list);
|
|
const expr_t *param_exprs[num_param + 1] = {};
|
|
list_scatter_rev (¶ms->list, param_exprs);
|
|
|
|
if (num_param == 1 && is_scalar (get_type (param_exprs[0]))) {
|
|
if (is_matrix (type)) {
|
|
return construct_diagonal (type, param_exprs[0], e);
|
|
}
|
|
if (is_vector (type)) {
|
|
return construct_broadcast (type, param_exprs[0], e);
|
|
}
|
|
}
|
|
if (num_param == 1 && is_matrix (get_type (param_exprs[0]))) {
|
|
if (is_matrix (type)) {
|
|
return construct_matrix (type, param_exprs[0], e);
|
|
}
|
|
}
|
|
if (is_matrix (type) && num_param == type_cols (type)) {
|
|
bool by_vector = true;
|
|
for (int i = 0; i < type_cols (type); i++) {
|
|
auto ptype = get_type (param_exprs[i]);
|
|
if (!is_nonscalar (ptype)
|
|
|| type_width (ptype) != type_rows (type)) {
|
|
by_vector = false;
|
|
break;
|
|
}
|
|
}
|
|
if (by_vector) {
|
|
auto mat = new_expr ();
|
|
mat->type = ex_vector;
|
|
mat->vector.type = type;
|
|
list_gather (&mat->vector.list, param_exprs, type_cols (type));
|
|
return mat;
|
|
}
|
|
}
|
|
return construct_by_components (type, params, e);
|
|
}
|
|
|
|
const expr_t *
|
|
constructor_expr (const expr_t *e, const expr_t *params)
|
|
{
|
|
auto type = e->symbol->type;
|
|
if (is_algebra (type)) {
|
|
return error (e, "algebra not implemented");
|
|
}
|
|
if (is_math (type)) {
|
|
return math_constructor (type, params, e);
|
|
}
|
|
return error (e, "not implemented");
|
|
}
|