quakeforge/tools/qfbsp/source/surfaces.c
2011-11-28 20:54:35 +09:00

443 lines
9 KiB
C

/*
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
See file, 'COPYING', for details.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
static __attribute__ ((used)) const char rcsid[] =
"$Id$";
#ifdef HAVE_STRING_H
# include "string.h"
#endif
#include <stdlib.h>
#include "QF/sys.h"
#include "bsp5.h"
#include "csg4.h"
#include "options.h"
#include "region.h"
#include "surfaces.h"
/** \addtogroup qfbsp_surface
*/
//@{
/*
a surface has all of the faces that could be drawn on a given plane
the outside filling stage can remove some of them so a better bsp can be
generated
*/
surface_t newcopy_t;
int subdivides;
int c_activefaces, c_peakfaces;
int c_activesurfaces, c_peaksurfaces;
face_t *
AllocFace (void)
{
face_t *f;
c_activefaces++;
if (c_activefaces > c_peakfaces)
c_peakfaces = c_activefaces;
f = malloc (sizeof (face_t));
memset (f, 0, sizeof (face_t));
f->planenum = -1;
return f;
}
void
FreeFace (face_t *f)
{
c_activefaces--;
free (f);
}
surface_t *
AllocSurface (void)
{
surface_t *s;
s = malloc (sizeof (surface_t));
memset (s, 0, sizeof (surface_t));
c_activesurfaces++;
if (c_activesurfaces > c_peaksurfaces)
c_peaksurfaces = c_activesurfaces;
return s;
}
void
FreeSurface (surface_t *s)
{
c_activesurfaces--;
free (s);
}
void
SubdivideFace (face_t *f, face_t **prevptr)
{
face_t *front, *back, *next;
float mins, maxs;
int axis, i;
plane_t plane;
texinfo_t *tex;
vec_t v;
if (f->texturenum < 0) // don't subdivide HINT or SKIP
return;
// special (non-surface cached) faces don't need subdivision
tex = &bsp->texinfo[f->texturenum];
if (tex->flags & TEX_SPECIAL)
return;
for (axis = 0; axis < 2; axis++) {
while (1) {
mins = BOGUS_RANGE;
maxs = -BOGUS_RANGE;
for (i = 0; i < f->points->numpoints; i++) {
v = DotProduct (f->points->points[i], tex->vecs[axis]);
if (v < mins)
mins = v;
if (v > maxs)
maxs = v;
}
if (maxs - mins <= options.subdivide_size)
break;
// split it
subdivides++;
VectorCopy (tex->vecs[axis], plane.normal);
v = VectorLength (plane.normal);
_VectorNormalize (plane.normal);
plane.dist = (mins + options.subdivide_size - 16) / v;
next = f->next;
SplitFace (f, &plane, &front, &back);
if (!front || !back)
Sys_Error ("SubdivideFace: didn't split the polygon");
*prevptr = back;
back->next = front;
front->next = next;
f = back;
}
}
}
static void
GatherNodeFaces_r (node_t *node)
{
face_t *next, *f;
if (node->planenum != PLANENUM_LEAF) {
// decision node
for (f = node->faces; f; f = next) {
next = f->next;
if (!f->points) { // face was removed outside
FreeFace (f);
} else {
f->next = validfaces[f->planenum];
validfaces[f->planenum] = f;
}
}
GatherNodeFaces_r (node->children[0]);
GatherNodeFaces_r (node->children[1]);
free (node);
} else {
// leaf node
free (node);
}
}
surface_t *
GatherNodeFaces (node_t *headnode)
{
memset (validfaces, 0, sizeof (validfaces));
GatherNodeFaces_r (headnode);
return BuildSurfaces ();
}
typedef struct hashvert_s {
struct hashvert_s *next;
vec3_t point;
int num;
int numplanes; // for corner determination
int planenums[2];
int numedges;
} hashvert_t;
#define POINT_EPSILON 0.01
int c_cornerverts;
hashvert_t hvertex[MAX_MAP_VERTS];
hashvert_t *hvert_p;
#define EDGEFACE_CHUNK 4096
int numedgefaces = 0;
edgeface_t *edgefaces = 0;
int firstmodeledge = 1;
int firstmodelface;
#define NUM_HASH 4096
hashvert_t *hashverts[NUM_HASH];
static vec3_t hash_min, hash_scale;
/** Initialize the vertex hash table.
*/
static void
InitHash (void)
{
int i;
int newsize[2];
vec3_t size;
vec_t scale, volume;
memset (hashverts, 0, sizeof (hashverts));
for (i = 0; i < 3; i++) {
hash_min[i] = -8000;
size[i] = 16000;
}
volume = size[0] * size[1];
scale = sqrt (volume / NUM_HASH);
newsize[0] = size[0] / scale;
newsize[1] = size[1] / scale;
hash_scale[0] = newsize[0] / size[0];
hash_scale[1] = newsize[1] / size[1];
hash_scale[2] = newsize[1];
hvert_p = hvertex;
}
/** Calulate the hash value of a vector.
\param vec The vector for which to calculate the hash value.
\return The hash value of the vector.
*/
static unsigned
HashVec (const vec3_t vec)
{
unsigned h;
h = hash_scale[0] * (vec[0] - hash_min[0]) * hash_scale[2]
+ hash_scale[1] * (vec[1] - hash_min[1]);
if (h >= NUM_HASH)
return NUM_HASH - 1;
return h;
}
/** Get the vertex number for the vertex.
\param in The vertex for which to get the number.
\param planenum The plane on which this vertex is.
*/
static int
GetVertex (const vec3_t in, int planenum)
{
hashvert_t *hv;
int h, i;
vec3_t vert;
dvertex_t v;
for (i = 0; i < 3; i++) {
if (fabs (in[i] - RINT (in[i])) < 0.001)
vert[i] = RINT (in[i]);
else
vert[i] = in[i];
}
h = HashVec (vert);
for (hv = hashverts[h]; hv; hv = hv->next) {
if (fabs (hv->point[0] - vert[0]) < POINT_EPSILON
&& fabs (hv->point[1] - vert[1]) < POINT_EPSILON
&& fabs (hv->point[2] - vert[2]) < POINT_EPSILON) {
hv->numedges++;
if (hv->numplanes == 3)
return hv->num; // already known to be a corner
for (i = 0; i < hv->numplanes; i++)
if (hv->planenums[i] == planenum)
return hv->num; // already know this plane
if (hv->numplanes == 2)
c_cornerverts++;
else
hv->planenums[hv->numplanes] = planenum;
hv->numplanes++;
return hv->num;
}
}
hv = hvert_p;
hv->numedges = 1;
hv->numplanes = 1;
hv->planenums[0] = planenum;
hv->next = hashverts[h];
hashverts[h] = hv;
VectorCopy (vert, hv->point);
hv->num = bsp->numvertexes;
if (hv->num == MAX_MAP_VERTS)
Sys_Error ("GetVertex: MAX_MAP_VERTS");
hvert_p++;
// emit a vertex
if (bsp->numvertexes == MAX_MAP_VERTS)
Sys_Error ("numvertexes == MAX_MAP_VERTS");
v.point[0] = vert[0];
v.point[1] = vert[1];
v.point[2] = vert[2];
BSP_AddVertex (bsp, &v);
return hv->num;
}
int c_tryedges;
/** Find an edge for the two vertices.
If an edge can not be found, create a new one. Will not create a three
(or more) face edge.
\param p1 The first vertex.
\param p2 The second vertex.
\param f The face of which the two vertices form an edge.
\return The edge number. For a re-used edge, the edge number will
be negative, indicating the ends of the edge are reversed.
*/
static int
GetEdge (const vec3_t p1, const vec3_t p2, face_t *f)
{
dedge_t edge;
int v1, v2, i;
if (!f->contents[0])
Sys_Error ("GetEdge: 0 contents");
c_tryedges++;
// get the vertex numbers for the two vertices
v1 = GetVertex (p1, f->planenum);
v2 = GetVertex (p2, f->planenum);
// search for an edge that uses the two vertices in the opposite direction
// but does not yet have a second face.
for (i = firstmodeledge; i < bsp->numedges; i++) {
if (v1 == bsp->edges[i].v[1] && v2 == bsp->edges[i].v[0]
&& !edgefaces[i].f[1]
&& edgefaces[i].f[0]->contents[0] == f->contents[0]) {
edgefaces[i].f[1] = f;
return -i;
}
}
// Create a new edge.
while (bsp->numedges >= numedgefaces) {
numedgefaces += EDGEFACE_CHUNK;
edgefaces = realloc (edgefaces, numedgefaces * sizeof (edgeface_t));
}
edge.v[0] = v1;
edge.v[1] = v2;
BSP_AddEdge (bsp, &edge);
edgefaces[i].f[0] = f;
edgefaces[i].f[1] = 0;
return i;
}
/** Give the face edges.
\param face The face to which edges will be given.
*/
static void
FindFaceEdges (face_t *face)
{
int i;
winding_t *facep = face->points;
face->outputnumber = -1;
face->edges = malloc (sizeof (int) * facep->numpoints);
for (i = 0; i < facep->numpoints; i++)
face->edges[i] = GetEdge (facep->points[i],
facep->points[(i + 1) % facep->numpoints],
face);
}
/** Recurse through the bsp tree, adding edges to the faces.
\param node bsp tree node.
*/
static void
MakeFaceEdges_r (node_t *node)
{
face_t *f;
if (node->planenum == PLANENUM_LEAF)
return;
for (f = node->faces; f; f = f->next)
if (f->texturenum >= 0)
FindFaceEdges (f);
MakeFaceEdges_r (node->children[0]);
MakeFaceEdges_r (node->children[1]);
}
void
MakeFaceEdges (node_t *headnode)
{
qprintf ("----- MakeFaceEdges -----\n");
InitHash ();
c_tryedges = 0;
c_cornerverts = 0;
MakeFaceEdges_r (headnode);
// CheckEdges ();
GrowNodeRegions (headnode);
firstmodeledge = bsp->numedges;
firstmodelface = bsp->numfaces;
}
//@}