mirror of
https://git.code.sf.net/p/quake/quakeforge
synced 2024-11-25 22:01:33 +00:00
6b1684b711
But only for scalar divisors. The simple method of AB†/(BB†) works only if B is a versor and there's also the problem of left and right division. Thanks to sudgy for making me stop and think before I actually implemented anything (though he mentioned only that it doesn't work for general mutli-vector divisors).
245 lines
6 KiB
R
245 lines
6 KiB
R
#include "test-harness.h"
|
|
#pragma warn no-vararg-integer
|
|
typedef @algebra(double(2,0,1)) PGA;
|
|
typedef PGA.group_mask(0x02) scalar_t;
|
|
typedef PGA.group_mask(0x04) vector_t;
|
|
typedef PGA.group_mask(0x01) bivector_t;
|
|
typedef PGA.group_mask(0x08) trivector_t;
|
|
typedef union {
|
|
PGA.group_mask(0x03) mvec;
|
|
struct {
|
|
bivector_t bvec;
|
|
scalar_t scalar;
|
|
};
|
|
} evengrades_t;
|
|
typedef union {
|
|
PGA.group_mask(0x0c) mvec;
|
|
struct {
|
|
vector_t vec;
|
|
trivector_t tvec;
|
|
};
|
|
} oddgrades_t;
|
|
|
|
int
|
|
main (void)
|
|
{
|
|
if (sizeof (scalar_t) != sizeof (double)) {
|
|
printf ("scalar has wrong size: %d\n", sizeof (scalar_t));
|
|
return 1;
|
|
}
|
|
if (sizeof (vector_t) != 3 * sizeof (scalar_t)) {
|
|
printf ("bivector has wrong size: %d\n", sizeof (vector_t));
|
|
return 1;
|
|
}
|
|
if (sizeof (bivector_t) != 3 * sizeof (scalar_t)) {
|
|
printf ("bivector has wrong size: %d\n", sizeof (bivector_t));
|
|
return 1;
|
|
}
|
|
if (sizeof (trivector_t) != sizeof (scalar_t)) {
|
|
printf ("trivector has wrong size: %d\n", sizeof (trivector_t));
|
|
return 1;
|
|
}
|
|
scalar_t scalar;
|
|
vector_t vec, vecb;
|
|
bivector_t bvec, bvecb;
|
|
trivector_t tvec, tvecb;
|
|
@algebra (PGA) {
|
|
scalar = 42;
|
|
vec = 3*e1 - 2*e2 + e0;
|
|
bvec = 4*e20 - 3*e01 + 2*e12;
|
|
tvec = 7*e012;
|
|
|
|
vecb = 5*e1 + 12*e2 - 13*e0;
|
|
bvecb = 6*e20 + 4*e01 + 1*e12;
|
|
tvecb = 3*e012;
|
|
}
|
|
if (scalar != 42) {
|
|
printf ("scalar != 42: %g\n", scalar);
|
|
return 1;
|
|
}
|
|
if ((dvec3)vec != '3 -2 1'd) {
|
|
printf ("vec != '3 -2 1': %lv\n", vec);
|
|
return 1;
|
|
}
|
|
if ((dvec3)bvec != '4 -3 2'd) {
|
|
printf ("vec != '4 -3 2': %lv\n", bvec);
|
|
return 1;
|
|
}
|
|
if ((double)tvec != 7) {
|
|
printf ("tvec != 7: %g\n", tvec);
|
|
return 1;
|
|
}
|
|
auto a = vec ∧ bvec;
|
|
if ((double)a != 20) {
|
|
printf ("vec ∧ bvec != 20: %lv\n", a);
|
|
return 1;
|
|
}
|
|
auto b = bvec ∧ vec;
|
|
if ((double)b != 20) {
|
|
printf ("bvec ∧ vec != 20: %lv\n", b);
|
|
return 1;
|
|
}
|
|
auto c = vec • bvec;
|
|
if ((dvec3)c != '4 6 1'd) {
|
|
printf ("vec • bvec != '4 6 1': %lv\n", c);
|
|
return 1;
|
|
}
|
|
auto d = bvec • vec;
|
|
if ((dvec3)d != '-4 -6 -1'd) {
|
|
printf ("bvec • vec != '-4 -6 -1': %lv\n", d);
|
|
return 1;
|
|
}
|
|
oddgrades_t e;
|
|
e.mvec = vec * bvec;
|
|
if ((dvec3)e.vec != '4 6 1'd || (scalar_t)e.tvec != 20) {
|
|
printf ("vec • bvec != '4 6 1' + 20: %lv %g\n", e.vec, e.tvec);
|
|
return 1;
|
|
}
|
|
oddgrades_t f;
|
|
f.mvec = bvec * vec;
|
|
if ((dvec3)f.vec != '-4 -6 -1'd || (scalar_t)f.tvec != 20) {
|
|
printf ("bvec • vec != '-4 -6 -1' + 20: %lv %g\n", f.vec, f.tvec);
|
|
return 1;
|
|
}
|
|
if (vec ∧ tvec || tvec ∧ vec) {
|
|
printf ("didn't get 0: %g %g", vec ∧ tvec, tvec ∧ vec);
|
|
return 0;
|
|
}
|
|
auto g = vec • tvec;
|
|
if ((dvec3)g != '21 -14 0'd) {
|
|
printf ("vec • tvec != '21 -14 0': %lv\n", g);
|
|
return 1;
|
|
}
|
|
auto h = tvec • vec;
|
|
if ((dvec3)h != '21 -14 0'd) {
|
|
printf ("vec • tvec != '21 -14 0': %lv\n", h);
|
|
return 1;
|
|
}
|
|
auto i = vec * tvec;
|
|
if ((dvec3)i != '21 -14 0'd) {
|
|
printf ("vec * tvec != '21 -14 0': %lv\n", i);
|
|
return 1;
|
|
}
|
|
auto j = tvec * vec;
|
|
if ((dvec3)j != '21 -14 0'd) {
|
|
printf ("vec * tvec != '21 -14 0': %lv\n", j);
|
|
return 1;
|
|
}
|
|
if (bvec ∧ tvec || tvec ∧ bvec) {
|
|
printf ("didn't get 0: %g %g", bvec ∧ tvec, tvec ∧ bvec);
|
|
return 0;
|
|
}
|
|
auto k = bvec • tvec;
|
|
if ((dvec3)k != '0 0 -14'd) {
|
|
printf ("bvec • tvec != '0 0 -14': %lv\n", k);
|
|
return 1;
|
|
}
|
|
auto l = tvec • bvec;
|
|
if ((dvec3)l != '0 0 -14'd) {
|
|
printf ("tvec • bvec != '0 0 -14': %lv\n", l);
|
|
return 1;
|
|
}
|
|
auto m = bvec * tvec;
|
|
if ((dvec3)m != '0 0 -14'd) {
|
|
printf ("bvec * tvec != '0 0 -14': %lv\n", m);
|
|
return 1;
|
|
}
|
|
auto n = tvec * bvec;
|
|
if ((dvec3)n != '0 0 -14'd) {
|
|
printf ("tvec * bvec != '0 0 -14': %lv\n", n);
|
|
return 1;
|
|
}
|
|
// if (vec ∧ vec || bvec ∧ bvec || tvec ∧ tvec) {
|
|
// printf ("didn't get 0: %g %g %g", vec ∧ vec, bvec ∧ bvec, tvec ∧ tvec);
|
|
// return 0;
|
|
// }
|
|
auto o = vec ∧ vecb;
|
|
if ((dvec3)o != '14 44 46'd) {
|
|
printf ("vec ∧ vecb != '14 44 46': %lv\n", o);
|
|
return 1;
|
|
}
|
|
auto p = vecb ∧ vec;
|
|
if ((dvec3)p != '-14 -44 -46'd) {
|
|
printf ("vecb ∧ vec != '-14 -44 -46': %lv\n", p);
|
|
return 1;
|
|
}
|
|
auto q = vec • vecb;
|
|
if (q != -9) {
|
|
printf ("vec • vecb != -9: %g\n", q);
|
|
return 1;
|
|
}
|
|
auto r = vecb • vec;
|
|
if (r != -9) {
|
|
printf ("vecb • vec != -9: %g\n", r);
|
|
return 1;
|
|
}
|
|
evengrades_t s;
|
|
s.mvec= vec * vecb;
|
|
if (s.scalar != -9 || (dvec3)s.bvec != '14 44 46'd) {
|
|
printf ("vec * vecb != -9, '14 44 46': %g %lv\n",
|
|
s.scalar, s.bvec);
|
|
return 1;
|
|
}
|
|
evengrades_t t;
|
|
t.mvec = vecb * vec;
|
|
if (t.scalar != -9 || (dvec3)t.bvec != '-14 -44 -46'd) {
|
|
printf ("vecb * vec != -9, '-14 -44 -46': %g %lv\n",
|
|
t.scalar, t.bvec);
|
|
return 1;
|
|
}
|
|
if (bvec ∧ bvecb || tvec ∧ tvecb) {
|
|
printf ("didn't get 0: %g %g", bvec ∧ bvecb, tvec ∧ tvecb);
|
|
return 0;
|
|
}
|
|
auto u = bvec • bvecb;
|
|
if (u != -2) {
|
|
printf ("bvec • bvecb != -2: %g\n", u);
|
|
return 1;
|
|
}
|
|
auto v = bvecb • bvec;
|
|
if (v != -2) {
|
|
printf ("bvecb • bvec != -2: %g\n", v);
|
|
return 1;
|
|
}
|
|
evengrades_t w;
|
|
w.mvec = bvec * bvecb;
|
|
if (w.scalar != -2 || (dvec3)w.bvec != '11 -8 0'd) {
|
|
printf ("bvec * bvecb != -2, '11 -8 0': %g %lv\n",
|
|
w.scalar, w.bvec);
|
|
return 1;
|
|
}
|
|
evengrades_t x;
|
|
x.mvec = bvecb * bvec;
|
|
if (x.scalar != -2 || (dvec3)x.bvec != '-11 8 0'd) {
|
|
printf ("vecb * vec != -2, '-11 8 0': %g %lv\n",
|
|
x.scalar, x.bvec);
|
|
return 1;
|
|
}
|
|
if (tvec • tvecb || tvec * tvecb) {
|
|
printf ("didn't get 0: %g %g", tvec • tvecb, tvec * tvecb);
|
|
return 0;
|
|
}
|
|
e.mvec = e.mvec†; // odd
|
|
if ((dvec3)e.vec != '4 6 1'd || (scalar_t)e.tvec != -20) {
|
|
printf ("odd† != '4 6 1' + -20: %lv %g\n", e.vec, e.tvec);
|
|
return 1;
|
|
}
|
|
s.mvec = s.mvec†; // even
|
|
if (s.scalar != -9 || (dvec3)s.bvec != '-14 -44 -46'd) {
|
|
printf ("even† != -9, '-14 -44 -46': %g %lv\n",
|
|
s.scalar, s.bvec);
|
|
return 1;
|
|
}
|
|
e.mvec = e.mvec / 2; // odd
|
|
if ((dvec3)e.vec != '2 3 0.5'd || (scalar_t)e.tvec != -10) {
|
|
printf ("odd† != '2 3 0.5' + -10: %lv %g\n", e.vec, e.tvec);
|
|
return 1;
|
|
}
|
|
s.mvec = s.mvec / 2; // even
|
|
if (s.scalar != -4.5 || (dvec3)s.bvec != '-7 -22 -23'd) {
|
|
printf ("even† != -4.5, '-7 -22 -23': %g %lv\n",
|
|
s.scalar, s.bvec);
|
|
return 1;
|
|
}
|
|
return 0; // to survive and prevail :)
|
|
}
|