quakeforge/tools/qfcc/source/flow.c
Bill Currie ca0b03687f Change the naming of ALLOC's free-list.
Rather than prefixing free_ to the supplied name, suffix _freelist to the
supplied name. The biggest advantage of this is it allows the free-list to
be a structure member. It also cleans up the name-space a little.
2013-03-08 22:16:31 +09:00

1275 lines
31 KiB
C

/*
flow.c
Flow graph analysis
Copyright (C) 2012 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2012/10/30
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "QF/alloc.h"
#include "QF/dstring.h"
#include "QF/set.h"
#include "QF/va.h"
#include "dags.h"
#include "def.h"
#include "defspace.h"
#include "diagnostic.h"
#include "dot.h"
#include "flow.h"
#include "function.h"
#include "options.h"
#include "qfcc.h"
#include "statements.h"
#include "symtab.h"
#include "type.h"
static flowvar_t *vars_freelist;
static flowloop_t *loops_freelist;
static flownode_t *nodes_freelist;
static flowgraph_t *graphs_freelist;
static struct {
const char *name;
operand_t op;
} flow_params[] = {
{".return", {0, op_def}},
{".param_0", {0, op_def}},
{".param_1", {0, op_def}},
{".param_2", {0, op_def}},
{".param_3", {0, op_def}},
{".param_4", {0, op_def}},
{".param_5", {0, op_def}},
{".param_6", {0, op_def}},
{".param_7", {0, op_def}},
};
static const int num_flow_params = sizeof(flow_params)/sizeof(flow_params[0]);
static flowvar_t *
new_flowvar (void)
{
flowvar_t *var;
ALLOC (256, flowvar_t, vars, var);
var->use = set_new ();
var->define = set_new ();
return var;
}
static flowloop_t *
new_loop (void)
{
flowloop_t *loop;
ALLOC (256, flowloop_t, loops, loop);
loop->nodes = set_new ();
return loop;
}
static void
delete_loop (flowloop_t *loop)
{
set_delete (loop->nodes);
FREE (loops, loop);
}
static flownode_t *
new_node (void)
{
flownode_t *node;
ALLOC (256, flownode_t, nodes, node);
return node;
}
static void
delete_node (flownode_t *node)
{
if (node->predecessors)
set_delete (node->predecessors);
if (node->successors)
set_delete (node->successors);
if (node->edges)
set_delete (node->edges);
if (node->dom)
set_delete (node->dom);
FREE (nodes, node);
}
static flowgraph_t *
new_graph (void)
{
flowgraph_t *graph;
ALLOC (256, flowgraph_t, graphs, graph);
return graph;
}
static void __attribute__((unused))
delete_graph (flowgraph_t *graph)
{
int i;
if (graph->nodes) {
for (i = 0; i < graph->num_nodes; i++)
delete_node (graph->nodes[i]);
free (graph->nodes);
}
if (graph->edges)
free (graph->edges);
if (graph->dfst)
set_delete (graph->dfst);
if (graph->dfo)
free (graph->dfo);
FREE (graphs, graph);
}
static def_t *
flowvar_get_def (flowvar_t *var)
{
operand_t *op = var->op;
switch (op->op_type) {
case op_def:
return op->o.def;
case op_value:
case op_label:
return 0;
case op_temp:
return op->o.tempop.def;
case op_alias:
internal_error (0, "unexpected alias operand");
}
internal_error (0, "oops, blue pill");
return 0;
}
static int
flowvar_is_global (flowvar_t *var)
{
def_t *def;
if (var->op->op_type != op_def)
return 0;
def = var->op->o.def;
if (def->alias)
def = def->alias;
if (def->local)
return 0;
return 1;
}
static int
flowvar_is_param (flowvar_t *var)
{
def_t *def;
if (var->op->op_type != op_def)
return 0;
def = var->op->o.def;
if (def->alias)
def = def->alias;
if (!def->local)
return 0;
if (!def->param)
return 0;
return 1;
}
#if 0
static int
flowvar_is_initialized (flowvar_t *var)
{
def_t *def;
if (var->op->op_type != op_def)
return 0;
def = var->op->o.def;
return def->initialized;
}
#endif
flowvar_t *
flow_get_var (operand_t *op)
{
if (!op)
return 0;
if (op->op_type == op_temp) {
if (!op->o.tempop.flowvar)
op->o.tempop.flowvar = new_flowvar ();
return op->o.tempop.flowvar;
}
if (op->op_type == op_def) {
if (!op->o.def->flowvar)
op->o.def->flowvar = new_flowvar ();
return op->o.def->flowvar;
}
return 0;
}
static int
count_operand (operand_t *op)
{
flowvar_t *var;
if (!op)
return 0;
if (op->op_type == op_label)
return 0;
var = flow_get_var (op);
// flowvars are initialized with number == 0, and any global flowvar
// used by a function will always have a number >= 0 after flow analysis,
// and local flowvars will always be 0 before flow analysis, so use -1
// to indicate the variable has been counted.
//
// Also, since this is the beginning of flow analysis for this function,
// ensure the define/use sets for global vars are empty. However, as
// checking if a var is global is too much trouble, just clear them all.
if (var && var->number != -1) {
set_empty (var->use);
set_empty (var->define);
var->number = -1;
return 1;
}
return 0;
}
static void
add_operand (function_t *func, operand_t *op)
{
flowvar_t *var;
if (!op)
return;
if (op->op_type == op_label)
return;
var = flow_get_var (op);
// If the flowvar number is still -1, then the flowvar has not yet been
// added to the list of variables referenced by the function.
if (var && var->number == -1) {
var->number = func->num_vars++;
var->op = op;
func->vars[var->number] = var;
}
}
static symbol_t *
param_symbol (const char *name)
{
symbol_t *sym;
sym = make_symbol (name, &type_param, pr.symtab->space, sc_extern);
if (!sym->table)
symtab_addsymbol (pr.symtab, sym);
return sym;
}
static void
flow_build_statements (function_t *func)
{
sblock_t *sblock;
statement_t *s;
int num_statements = 0;
for (sblock = func->sblock; sblock; sblock = sblock->next) {
for (s = sblock->statements; s; s = s->next)
s->number = num_statements++;
}
if (!num_statements)
return;
func->statements = malloc (num_statements * sizeof (statement_t *));
func->num_statements = num_statements;
for (sblock = func->sblock; sblock; sblock = sblock->next) {
for (s = sblock->statements; s; s = s->next)
func->statements[s->number] = s;
}
}
static void
flow_build_vars (function_t *func)
{
statement_t *s;
operand_t *operands[4];
int num_vars = 0;
int i, j;
set_t *stuse;
set_t *stdef;
set_iter_t *var_i;
flowvar_t *var;
// first, count .return and .param_[0-7] as they are always needed
for (i = 0; i < num_flow_params; i++) {
flow_params[i].op.o.def = param_symbol (flow_params[i].name)->s.def;
num_vars += count_operand (&flow_params[i].op);
}
// then run through the statements in the function looking for accessed
// variables
for (i = 0; i < func->num_statements; i++) {
s = func->statements[i];
flow_analyze_statement (s, 0, 0, 0, operands);
for (j = 0; j < 4; j++)
num_vars += count_operand (operands[j]);
}
if (!num_vars)
return;
func->vars = malloc (num_vars * sizeof (daglabel_t *));
stuse = set_new ();
stdef = set_new ();
func->num_vars = 0; // incremented by add_operand
// first, add .return and .param_[0-7] as they are always needed
for (i = 0; i < num_flow_params; i++)
add_operand (func, &flow_params[i].op);
// then run through the statements in the function adding accessed
// variables
for (i = 0; i < func->num_statements; i++) {
s = func->statements[i];
flow_analyze_statement (s, 0, 0, 0, operands);
for (j = 0; j < 4; j++)
add_operand (func, operands[j]);
flow_analyze_statement (s, stuse, stdef, 0, 0);
for (var_i = set_first (stdef); var_i; var_i = set_next (var_i)) {
var = func->vars[var_i->element];
set_add (var->define, i);
}
for (var_i = set_first (stuse); var_i; var_i = set_next (var_i)) {
var = func->vars[var_i->element];
set_add (var->use, i);
}
}
func->global_vars = set_new ();
// mark all global vars (except .return and .param_N)
for (i = num_flow_params; i < func->num_vars; i++) {
if (flowvar_is_global (func->vars[i]))
set_add (func->global_vars, i);
}
// create dummy defs for local vars
for (i = 0; i < func->num_vars; i++) {
int offset, size;
int j;
var = func->vars[i];
if (flowvar_is_global (var) || flowvar_is_param (var))
continue;
if (var->op->op_type == op_temp) {
j = func->symtab->space->size + var->number;
set_add (var->define, func->num_statements + j);
} else {
offset = def_offset (var->op->o.def);
size = def_size (var->op->o.def);
for (j = offset; j < offset + size; j++)
set_add (var->define, func->num_statements + j);
}
}
set_delete (stuse);
set_delete (stdef);
}
static int
flow_kill_aliases_visit (def_t *def, void *_kill)
{
set_t *kill = (set_t *) _kill;
flowvar_t *var;
var = def->flowvar;
if (var)
set_union (kill, var->define);
return 0;
}
static void
flow_kill_aliases (set_t *kill, flowvar_t *var, const set_t *uninit)
{
operand_t *op;
set_t *tmp;
set_union (kill, var->define);
op = var->op;
tmp = set_new ();
if (op->op_type == op_temp) {
if (op->o.tempop.alias) {
op = op->o.tempop.alias;
var = op->o.tempop.flowvar;
if (var)
set_union (tmp, var->define);
}
for (op = op->o.tempop.alias_ops; op; op = op->next) {
var = op->o.tempop.flowvar;
if (var)
set_union (tmp, var->define);
}
} else if (op->op_type == op_def) {
def_visit_all (op->o.def, 1, flow_kill_aliases_visit, tmp);
// don't allow aliases to kill definitions in the entry dummy block
set_difference (tmp, uninit);
}
// merge the alias kills with the current def's kills
set_union (kill, tmp);
}
static void
flow_reaching_defs (flowgraph_t *graph)
{
int i;
int changed;
flownode_t *node;
statement_t *st;
set_t *stdef = set_new ();
set_t *stgen = set_new ();
set_t *stkill = set_new ();
set_t *oldout = set_new ();
set_t *gen, *kill, *in, *out, *uninit;
set_iter_t *var_i;
set_iter_t *pred_i;
flowvar_t *var;
// First, create out for the entry dummy node using fake statement numbers.
kill = set_new ();
for (i = 0; i < graph->func->num_statements; i++)
set_add (kill, i);
uninit = set_new ();
for (i = 0; i < graph->func->num_vars; i++) {
var = graph->func->vars[i];
set_union (uninit, var->define);// do not want alias handling here
set_difference (uninit, kill); // remove any gens from the function
}
graph->nodes[graph->num_nodes]->reaching_defs.out = uninit;
graph->nodes[graph->num_nodes]->reaching_defs.in = set_new ();
graph->nodes[graph->num_nodes]->reaching_defs.gen = set_new ();
graph->nodes[graph->num_nodes]->reaching_defs.kill = set_new ();
// Calculate gen and kill for each block, and initialize in and out
for (i = 0; i < graph->num_nodes; i++) {
node = graph->nodes[i];
gen = set_new ();
kill = set_new ();
for (st = node->sblock->statements; st; st = st->next) {
flow_analyze_statement (st, 0, stdef, 0, 0);
set_empty (stgen);
set_empty (stkill);
for (var_i = set_first (stdef); var_i; var_i = set_next (var_i)) {
var = graph->func->vars[var_i->element];
flow_kill_aliases (stkill, var, uninit);
set_remove (stkill, st->number);
set_add (stgen, st->number);
}
set_difference (gen, stkill);
set_union (gen, stgen);
set_difference (kill, stgen);
set_union (kill, stkill);
}
node->reaching_defs.gen = gen;
node->reaching_defs.kill = kill;
node->reaching_defs.in = set_new ();
node->reaching_defs.out = set_new ();
}
changed = 1;
while (changed) {
changed = 0;
// flow down the graph
for (i = 0; i < graph->num_nodes; i++) {
node = graph->nodes[graph->dfo[i]];
in = node->reaching_defs.in;
out = node->reaching_defs.out;
gen = node->reaching_defs.gen;
kill = node->reaching_defs.kill;
for (pred_i = set_first (node->predecessors); pred_i;
pred_i = set_next (pred_i)) {
flownode_t *pred = graph->nodes[pred_i->element];
set_union (in, pred->reaching_defs.out);
}
set_assign (oldout, out);
set_assign (out, in);
set_difference (out, kill);
set_union (out, gen);
if (!set_is_equivalent (out, oldout))
changed = 1;
}
}
set_delete (oldout);
set_delete (stdef);
set_delete (stgen);
set_delete (stkill);
}
static void
live_set_use (set_t *stuse, set_t *use, set_t *def)
{
// the variable is used before it is defined
set_difference (stuse, def);
set_union (use, stuse);
}
static void
live_set_def (set_t *stdef, set_t *use, set_t *def)
{
// the variable is defined before it is used
set_difference (stdef, use);
set_union (def, stdef);
}
static void
flow_live_vars (flowgraph_t *graph)
{
int i, j;
flownode_t *node;
set_t *use;
set_t *def;
set_t *stuse = set_new ();
set_t *stdef = set_new ();
set_t *tmp = set_new ();
set_iter_t *succ;
statement_t *st;
int changed = 1;
// first, calculate use and def for each block, and initialize the in and
// out sets.
for (i = 0; i < graph->num_nodes; i++) {
node = graph->nodes[i];
use = set_new ();
def = set_new ();
for (st = node->sblock->statements; st; st = st->next) {
flow_analyze_statement (st, stuse, stdef, 0, 0);
live_set_use (stuse, use, def);
live_set_def (stdef, use, def);
}
node->live_vars.use = use;
node->live_vars.def = def;
node->live_vars.in = set_new ();
node->live_vars.out = set_new ();
}
// create in for the exit dummy block using the global vars used by the
// function
use = set_new ();
set_assign (use, graph->func->global_vars);
node = graph->nodes[graph->num_nodes + 1];
node->live_vars.in = use;
node->live_vars.out = set_new ();
node->live_vars.use = set_new ();
node->live_vars.def = set_new ();
while (changed) {
changed = 0;
// flow UP the graph because live variable analysis uses information
// from a node's successors rather than its predecessors.
for (j = graph->num_nodes - 1; j >= 0; j--) {
node = graph->nodes[graph->dfo[j]];
set_empty (tmp);
for (succ = set_first (node->successors); succ;
succ = set_next (succ))
set_union (tmp, graph->nodes[succ->element]->live_vars.in);
if (!set_is_equivalent (node->live_vars.out, tmp)) {
changed = 1;
set_assign (node->live_vars.out, tmp);
}
set_assign (node->live_vars.in, node->live_vars.out);
set_difference (node->live_vars.in, node->live_vars.def);
set_union (node->live_vars.in, node->live_vars.use);
}
}
set_delete (stuse);
set_delete (stdef);
set_delete (tmp);
}
static void
flow_uninit_scan_statements (flownode_t *node, set_t *defs, set_t *uninit)
{
set_t *stuse;
set_t *stdef;
statement_t *st;
set_iter_t *var_i;
flowvar_t *var;
operand_t *op;
// defs holds only reaching definitions. make it hold only reaching
// uninitialized definitions
set_intersection (defs, uninit);
stuse = set_new ();
stdef = set_new ();
for (st = node->sblock->statements; st; st = st->next) {
flow_analyze_statement (st, stuse, stdef, 0, 0);
for (var_i = set_first (stuse); var_i; var_i = set_next (var_i)) {
var = node->graph->func->vars[var_i->element];
if (set_is_intersecting (defs, var->define)) {
def_t *def = flowvar_get_def (var);
if (def) {
if (options.warnings.uninited_variable) {
warning (st->expr, "%s may be used uninitialized",
def->name);
}
} else {
bug (st->expr, "st %d, uninitialized temp %s",
st->number, operand_string (var->op));
}
}
// avoid repeat warnings in this node
set_difference (defs, var->define);
}
for (var_i = set_first (stdef); var_i; var_i = set_next (var_i)) {
var = node->graph->func->vars[var_i->element];
// kill any reaching uninitialized definitions for this variable
set_difference (defs, var->define);
if (var->op->op_type == op_temp) {
op = var->op;
if (op->o.tempop.alias) {
var = op->o.tempop.alias->o.tempop.flowvar;
if (var)
set_difference (defs, var->define);
}
for (op = op->o.tempop.alias_ops; op; op = op->next) {
var = op->o.tempop.flowvar;
if (var)
set_difference (defs, var->define);
}
}
}
}
set_delete (stuse);
set_delete (stdef);
}
static void
flow_uninitialized (flowgraph_t *graph)
{
int i;
flownode_t *node;
flowvar_t *var;
set_iter_t *var_i;
set_t *defs;
set_t *uninitialized;
uninitialized = set_new ();
node = graph->nodes[graph->num_nodes];
set_assign (uninitialized, node->reaching_defs.out);
defs = set_new ();
for (i = 0; i < graph->num_nodes; i++) {
node = graph->nodes[graph->dfo[i]];
set_empty (defs);
// collect definitions of all variables "used" in this node. use from
// the live vars analysis is perfect for the job
for (var_i = set_first (node->live_vars.use); var_i;
var_i = set_next (var_i)) {
var = graph->func->vars[var_i->element];
set_union (defs, var->define);
}
// interested in only those defintions that actually reach this node
set_intersection (defs, node->reaching_defs.in);
// if any of the definitions come from the entry dummy block, then
// the statements need to be scanned in case an aliasing definition
// kills the dummy definition before the usage, and also so the line
// number information can be obtained from the statement.
if (set_is_intersecting (defs, uninitialized))
flow_uninit_scan_statements (node, defs, uninitialized);
}
set_delete (defs);
}
static void
flow_build_dags (flowgraph_t *graph)
{
int i;
flownode_t *node;
for (i = 0; i < graph->num_nodes; i++) {
node = graph->nodes[i];
node->dag = dag_create (node);
}
if (options.block_dot.dags)
dump_dot ("dags", graph, dump_dot_flow_dags);
}
static void
flow_cleanup_dags (flowgraph_t *graph)
{
int i;
flownode_t *node;
for (i = 0; i < graph->num_nodes; i++) {
node = graph->nodes[i];
dag_remove_dead_nodes (node->dag);
}
if (options.block_dot.dags)
dump_dot ("cleaned-dags", graph, dump_dot_flow_dags);
}
static sblock_t *
flow_generate (flowgraph_t *graph)
{
int i;
sblock_t *code = 0;
sblock_t **tail = &code;
for (i = 0; i < graph->num_nodes; i++) {
ex_label_t *label;
sblock_t *block;
flownode_t *node = graph->nodes[i];
*tail = block = new_sblock ();
tail = &(*tail)->next;
// first, transfer any labels on the old node to the new
while ((label = node->sblock->labels)) {
node->sblock->labels = label->next;
label->next = block->labels;
block->labels = label;
label->dest = block;
}
// generate new statements from the dag;
dag_generate (node->dag, block);
}
if (options.block_dot.post)
dump_dot ("post", code, dump_dot_sblock);
return code;
}
static void
flow_add_op_var (set_t *set, operand_t *op)
{
flowvar_t *var;
if (!set)
return;
if (!(var = flow_get_var (op)))
return;
set_add (set, var->number);
}
void
flow_analyze_statement (statement_t *s, set_t *use, set_t *def, set_t *kill,
operand_t *operands[4])
{
int i, start, calln = -1;
if (use)
set_empty (use);
if (def)
set_empty (def);
if (kill)
set_empty (kill);
if (operands) {
for (i = 0; i < 4; i++)
operands[i] = 0;
}
switch (s->type) {
case st_none:
internal_error (s->expr, "not a statement");
case st_expr:
flow_add_op_var (def, s->opc);
flow_add_op_var (use, s->opa);
if (s->opb)
flow_add_op_var (use, s->opb);
if (operands) {
operands[0] = s->opc;
operands[1] = s->opa;
operands[2] = s->opb;
}
break;
case st_assign:
flow_add_op_var (def, s->opb);
flow_add_op_var (use, s->opa);
if (operands) {
operands[0] = s->opb;
operands[1] = s->opa;
}
break;
case st_ptrassign:
case st_move:
flow_add_op_var (use, s->opa);
flow_add_op_var (use, s->opb);
if (!strcmp (s->opcode, "<MOVE>")) {
flow_add_op_var (def, s->opc);
} else if (!strcmp (s->opcode, "<MOVEP>")) {
flow_add_op_var (use, s->opc);
if (s->opc->op_type == op_value
&& s->opc->o.value->type == ev_pointer
&& s->opc->o.value->v.pointer.def) {
operand_t *op;
ex_pointer_t *ptr = &s->opc->o.value->v.pointer;
op = def_operand (ptr->def, ptr->type);
flow_add_op_var (def, op);
if (operands)
operands[0] = op;
else
free_operand (op);
} else {
if (operands)
operands[3] = s->opc;
}
} else {
if (s->opc)
flow_add_op_var (use, s->opc);
}
if (kill) {
//FIXME set of everything
}
if (operands) {
if (!strcmp (s->opcode, "<MOVE>"))
operands[0] = s->opc;
operands[1] = s->opa;
operands[2] = s->opb;
if (strncmp (s->opcode, "<MOVE", 5))
operands[3] = s->opc;
}
break;
case st_state:
flow_add_op_var (use, s->opa);
flow_add_op_var (use, s->opb);
if (s->opc)
flow_add_op_var (use, s->opc);
//FIXME entity members
if (operands) {
operands[1] = s->opa;
operands[2] = s->opb;
operands[3] = s->opc;
}
break;
case st_func:
if (strcmp (s->opcode, "<RETURN>") == 0
|| strcmp (s->opcode, "<DONE>") == 0) {
flow_add_op_var (use, s->opa);
} else if (strcmp (s->opcode, "<RETURN_V>") == 0) {
if (use)
set_add (use, 0); //FIXME assumes .return location
}
if (strncmp (s->opcode, "<CALL", 5) == 0) {
start = 0;
calln = s->opcode[5] - '0';
flow_add_op_var (use, s->opa);
} else if (strncmp (s->opcode, "<RCALL", 6) == 0) {
start = 2;
calln = s->opcode[6] - '0';
flow_add_op_var (use, s->opa);
flow_add_op_var (use, s->opb);
if (s->opc)
flow_add_op_var (use, s->opc);
}
if (calln >= 0) {
if (use) {
for (i = start; i < calln; i++)
set_add (use, i + 1);//FIXME assumes .param_N locations
}
if (kill)
set_add (kill, 0); //FIXME assumes .return location
}
if (operands) {
operands[1] = s->opa;
operands[2] = s->opb;
operands[3] = s->opc;
}
break;
case st_flow:
if (strcmp (s->opcode, "<GOTO>") != 0) {
flow_add_op_var (use, s->opa);
if (strcmp (s->opcode, "<JUMPB>") == 0)
flow_add_op_var (use, s->opb);
}
if (operands) {
operands[1] = s->opa;
operands[2] = s->opb;
}
break;
}
}
static void
flow_find_successors (flowgraph_t *graph)
{
int i;
flownode_t *node;
sblock_t *sb;
statement_t *st;
sblock_t **target_list, **target;
// "convert" the basic blocks connections to flow-graph connections
for (i = 0; i < graph->num_nodes + 2; i++) {
node = graph->nodes[i];
set_empty (node->successors);
set_empty (node->predecessors);
set_empty (node->edges);
}
graph->num_edges = 0;
for (i = 0; i < graph->num_nodes; i++) {
node = graph->nodes[i];
sb = node->sblock;
st = 0;
if (sb->statements)
st = (statement_t *) sb->tail;
//NOTE: if st is null (the sblock has no statements), statement_is_*
//will return false
//FIXME jump/jumpb
if (statement_is_goto (st) || statement_is_jumpb (st)) {
// sb's next is never followed.
target_list = statement_get_targetlist (st);
for (target = target_list; *target; target++)
set_add (node->successors, (*target)->flownode->id);
free (target_list);
} else if (statement_is_cond (st)) {
// branch: either sb's next or the conditional statment's
// target will be followed.
set_add (node->successors, sb->next->flownode->id);
target_list = statement_get_targetlist (st);
for (target = target_list; *target; target++)
set_add (node->successors, (*target)->flownode->id);
free (target_list);
} else if (statement_is_return (st)) {
// exit from function (dead end)
// however, make the exit dummy block the node's successor
set_add (node->successors, graph->num_nodes + 1);
} else {
// there is no flow-control statement in sb, so sb's next
// must be followed
if (sb->next) {
set_add (node->successors, sb->next->flownode->id);
} else {
bug (0, "code drops off the end of the function");
// this shouldn't happen
// however, make the exit dummy block the node's successor
set_add (node->successors, graph->num_nodes + 1);
}
}
graph->num_edges += set_size (node->successors);
}
// set the successor for the entry dummy node to the real entry node
node = graph->nodes[graph->num_nodes];
set_add (node->successors, 0);
graph->num_edges += set_size (node->successors);
}
static void
flow_make_edges (flowgraph_t *graph)
{
int i, j;
flownode_t *node;
set_iter_t *succ;
if (graph->edges);
free (graph->edges);
graph->edges = malloc (graph->num_edges * sizeof (flowedge_t));
for (j = 0, i = 0; i < graph->num_nodes + 2; i++) {
node = graph->nodes[i];
for (succ = set_first (node->successors); succ;
succ = set_next (succ), j++) {
set_add (node->edges, j);
graph->edges[j].tail = i;
graph->edges[j].head = succ->element;
}
}
}
static void
flow_find_predecessors (flowgraph_t *graph)
{
int i;
flownode_t *node;
set_iter_t *succ;
for (i = 0; i < graph->num_nodes + 2; i++) {
node = graph->nodes[i];
for (succ = set_first (node->successors); succ;
succ = set_next (succ)) {
set_add (graph->nodes[succ->element]->predecessors, i);
}
}
}
static void
flow_find_dominators (flowgraph_t *graph)
{
set_t *work;
flownode_t *node;
int i;
set_iter_t *pred;
int changed;
if (!graph->num_nodes)
return;
// First, create a base set for the initial state of the non-initial nodes
work = set_new ();
for (i = 0; i < graph->num_nodes; i++)
set_add (work, i);
set_add (graph->nodes[0]->dom, 0);
// initialize dom for the non-initial nodes
for (i = 1; i < graph->num_nodes; i++) {
set_assign (graph->nodes[i]->dom, work);
}
do {
changed = 0;
for (i = 1; i < graph->num_nodes; i++) {
node = graph->nodes[i];
pred = set_first (node->predecessors);
set_empty (work);
for (pred = set_first (node->predecessors); pred;
pred = set_next (pred))
set_intersection (work, graph->nodes[pred->element]->dom);
set_add (work, i);
if (!set_is_equivalent (work, node->dom))
changed = 1;
set_assign (node->dom, work);
}
} while (changed);
set_delete (work);
}
static void
insert_loop_node (flowloop_t *loop, unsigned n, set_t *stack)
{
if (!set_is_member (loop->nodes, n)) {
set_add (loop->nodes, n);
set_add (stack, n);
}
}
static flowloop_t *
make_loop (flowgraph_t *graph, unsigned n, unsigned d)
{
flowloop_t *loop = new_loop ();
flownode_t *node;
set_t *stack = set_new ();
set_iter_t *pred;
loop->head = d;
set_add (loop->nodes, d);
insert_loop_node (loop, n, stack);
while (!set_is_empty (stack)) {
set_iter_t *ss = set_first (stack);
unsigned m = ss->element;
set_del_iter (ss);
set_remove (stack, m);
node = graph->nodes[m];
for (pred = set_first (node->predecessors); pred;
pred = set_next (pred))
insert_loop_node (loop, pred->element, stack);
}
set_delete (stack);
return loop;
}
static void
flow_find_loops (flowgraph_t *graph)
{
flownode_t *node;
set_iter_t *succ;
flowloop_t *loop, *l;
flowloop_t *loop_list = 0;
int i;
for (i = 0; i < graph->num_nodes; i++) {
node = graph->nodes[i];
for (succ = set_first (node->successors); succ;
succ = set_next (succ)) {
if (set_is_member (node->dom, succ->element)) {
loop = make_loop (graph, node->id, succ->element);
for (l = loop_list; l; l = l->next) {
if (l->head == loop->head
&& !set_is_subset (l->nodes, loop->nodes)
&& !set_is_subset (loop->nodes, l->nodes)) {
set_union (l->nodes, loop->nodes);
delete_loop (loop);
loop = 0;
break;
}
}
if (loop) {
loop->next = loop_list;
loop_list = loop;
}
}
}
}
graph->loops = loop_list;
}
static void
df_search (flowgraph_t *graph, set_t *visited, int *i, int n)
{
flownode_t *node;
set_iter_t *edge;
int succ;
set_add (visited, n);
node = graph->nodes[n];
for (edge = set_first (node->edges); edge; edge = set_next (edge)) {
succ = graph->edges[edge->element].head;
if (!set_is_member (visited, succ)) {
set_add (graph->dfst, edge->element);
df_search (graph, visited, i, succ);
}
}
node->dfn = --*i;
graph->dfo[node->dfn] = n;
}
static void
flow_build_dfst (flowgraph_t *graph)
{
set_t *visited = set_new ();
int i;
// mark the dummy nodes as visited to keep them out of the dfst
set_add (visited, graph->num_nodes);
set_add (visited, graph->num_nodes + 1);
if (graph->dfo)
free (graph->dfo);
if (graph->dfst)
set_delete (graph->dfst);
graph->dfo = calloc (graph->num_nodes, sizeof (int));
graph->dfst = set_new ();
i = graph->num_nodes;
df_search (graph, visited, &i, 0);
set_delete (visited);
}
static int
flow_remove_unreachable_nodes (flowgraph_t *graph)
{
int i, j;
flownode_t *node;
for (i = 0, j = 0; i < graph->num_nodes; i++) {
node = graph->nodes[i];
if (node->dfn < 0) // skip over unreachable nodes
continue;
node->id = j; // new node number
graph->nodes[j++] = node;
}
graph->nodes[j] = graph->nodes[i]; // copy entry dummy node
graph->nodes[j + 1] = graph->nodes[i + 1]; // copy exit dummy node
// kill the pointers to unreachable nodes
for (i = j; i < graph->num_nodes; i++)
graph->nodes[i + 2] = 0;
if (j < graph->num_nodes) {
graph->num_nodes = j;
return 1;
}
return 0;
}
static flownode_t *
flow_make_node (sblock_t *sblock, int id, function_t *func)
{
flownode_t *node;
node = new_node ();
node->predecessors = set_new ();
node->successors = set_new ();
node->edges = set_new ();
node->dom = set_new ();
node->global_vars = func->global_vars;
node->id = id;
node->sblock = sblock;
if (sblock)
sblock->flownode = node;
node->graph = func->graph;
// Mark the node as unreachable. flow_build_dfst() will mark reachable
// nodes with a value >= 0
node->dfn = -1;
return node;
}
static flowgraph_t *
flow_build_graph (function_t *func)
{
sblock_t *sblock = func->sblock;
flowgraph_t *graph;
flownode_t *node;
sblock_t *sb;
int i;
int pass = 0;
graph = new_graph ();
graph->func = func;
func->graph = graph;
for (sb = sblock; sb; sb = sb->next)
graph->num_nodes++;
// + 2 for the uninitialized dummy head block and the live dummy end block
graph->nodes = malloc ((graph->num_nodes + 2) * sizeof (flownode_t *));
for (i = 0, sb = sblock; sb; i++, sb = sb->next)
graph->nodes[i] = flow_make_node (sb, i, func);
// Create the dummy node for detecting uninitialized variables
node = flow_make_node (0, graph->num_nodes, func);
graph->nodes[graph->num_nodes] = node;
// Create the dummy node for making global vars live at function exit
node = flow_make_node (0, graph->num_nodes + 1, func);
graph->nodes[graph->num_nodes + 1] = node;
do {
if (pass > 1)
internal_error (0, "too many unreachable node passes");
flow_find_successors (graph);
flow_make_edges (graph);
flow_build_dfst (graph);
if (options.block_dot.flow)
dump_dot (va ("flow-%d", pass), graph, dump_dot_flow);
pass++;
} while (flow_remove_unreachable_nodes (graph));
flow_find_predecessors (graph);
flow_find_dominators (graph);
flow_find_loops (graph);
return graph;
}
void
flow_data_flow (function_t *func)
{
flowgraph_t *graph;
flow_build_statements (func);
flow_build_vars (func);
graph = flow_build_graph (func);
flow_reaching_defs (graph);
if (options.block_dot.reaching)
dump_dot ("reaching", graph, dump_dot_flow_reaching);
flow_live_vars (graph);
if (options.block_dot.live)
dump_dot ("live", graph, dump_dot_flow_live);
flow_uninitialized (graph);
flow_build_dags (graph);
flow_cleanup_dags (graph);
func->sblock = flow_generate (graph);
}