quakeforge/include/QF/math/quaternion.h
Bill Currie 54b4d589aa Split up mathlib.h into several smaller headers.
This should make maintaining them a little easier.

The copyright block in most of the new headers (execpt vector.h) reflect
when the functions in the relevant header were first created.
2012-08-19 17:39:09 +09:00

173 lines
4.4 KiB
C

/*
quaternion.h
Quaternion functions
Copyright (C) 2004 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2004/4/7
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifndef __QF_math_quaternion_h
#define __QF_math_quaternion_h
/** \defgroup mathlib_quaternion Quaternion functions
\ingroup utils
*/
//@{
#include "QF/qtypes.h"
extern const vec_t *const quat_origin;
#define QDotProduct(a,b) ((a)[0] * (b)[0] + (a)[1] * (b)[1] \
+ (a)[2] * (b)[2] + (a)[3] * (b)[3])
#define QuatSubtract(a,b,c) \
do { \
(c)[0] = (a)[0] - (b)[0]; \
(c)[1] = (a)[1] - (b)[1]; \
(c)[2] = (a)[2] - (b)[2]; \
(c)[3] = (a)[3] - (b)[3]; \
} while (0)
#define QuatNegate(a,b) \
do { \
(b)[0] = -(a)[0]; \
(b)[1] = -(a)[1]; \
(b)[2] = -(a)[2]; \
(b)[3] = -(a)[3]; \
} while (0)
#define QuatConj(a,b) \
do { \
(b)[0] = (a)[0]; \
(b)[1] = -(a)[1]; \
(b)[2] = -(a)[2]; \
(b)[3] = -(a)[3]; \
} while (0)
#define QuatAdd(a,b,c) \
do { \
(c)[0] = (a)[0] + (b)[0]; \
(c)[1] = (a)[1] + (b)[1]; \
(c)[2] = (a)[2] + (b)[2]; \
(c)[3] = (a)[3] + (b)[3]; \
} while (0)
#define QuatCopy(a,b) \
do { \
(b)[0] = (a)[0]; \
(b)[1] = (a)[1]; \
(b)[2] = (a)[2]; \
(b)[3] = (a)[3]; \
} while (0)
#define QuatMultAdd(a,s,b,c) \
do { \
(c)[0] = (a)[0] + (s) * (b)[0]; \
(c)[1] = (a)[1] + (s) * (b)[1]; \
(c)[2] = (a)[2] + (s) * (b)[2]; \
(c)[3] = (a)[3] + (s) * (b)[3]; \
} while (0)
#define QuatMultSub(a,s,b,c) \
do { \
(c)[0] = (a)[0] - (s) * (b)[0]; \
(c)[1] = (a)[1] - (s) * (b)[1]; \
(c)[2] = (a)[2] - (s) * (b)[2]; \
(c)[3] = (a)[3] - (s) * (b)[3]; \
} while (0)
#define QuatLength(a) sqrt(QDotProduct(a, a))
#define QuatScale(a,b,c) \
do { \
(c)[0] = (a)[0] * (b); \
(c)[1] = (a)[1] * (b); \
(c)[2] = (a)[2] * (b); \
(c)[3] = (a)[3] * (b); \
} while (0)
#define QuatCompMult(a,b,c) \
do { \
(c)[0] = (a)[0] * (b)[0]; \
(c)[1] = (a)[1] * (b)[1]; \
(c)[2] = (a)[2] * (b)[2]; \
(c)[3] = (a)[3] * (b)[3]; \
} while (0)
#define QuatCompDiv(a,b,c) \
do { \
(c)[0] = (a)[0] / (b)[0]; \
(c)[1] = (a)[1] / (b)[1]; \
(c)[2] = (a)[2] / (b)[2]; \
(c)[3] = (a)[3] / (b)[3]; \
} while (0)
#define QuatCompCompare(x, op, y) \
(((x)[0] op (y)[0]) && ((x)[1] op (y)[1]) \
&& ((x)[2] op (y)[2]) && ((x)[3] op (y)[3]))
#define QuatCompare(x, y) QuatCompCompare (x, ==, y)
#define QuatCompMin(a, b, c) \
do { \
(c)[0] = min ((a)[0], (b)[0]); \
(c)[1] = min ((a)[1], (b)[1]); \
(c)[2] = min ((a)[2], (b)[2]); \
(c)[3] = min ((a)[3], (b)[3]); \
} while (0)
#define QuatCompMax(a, b, c) \
do { \
(c)[0] = max ((a)[0], (b)[0]); \
(c)[1] = max ((a)[1], (b)[1]); \
(c)[2] = max ((a)[2], (b)[2]); \
(c)[3] = max ((a)[3], (b)[3]); \
} while (0)
#define QuatCompBound(a, b, c, d) \
do { \
(d)[0] = bound ((a)[0], (b)[0], (c)[0]); \
(d)[1] = bound ((a)[1], (b)[1], (c)[1]); \
(d)[2] = bound ((a)[2], (b)[2], (c)[2]); \
(d)[3] = bound ((a)[3], (b)[3], (c)[3]); \
} while (0)
#define QuatIsZero(a) (!(a)[0] && !(a)[1] && !(a)[2] && !(a)[3])
#define QuatZero(a) ((a)[3] = (a)[2] = (a)[1] = (a)[0] = 0);
#define QuatSet(a,b,c,d,e) \
do { \
(e)[0] = a; \
(e)[1] = b; \
(e)[2] = c; \
(e)[3] = d; \
} while (0)
#define QuatBlend(q1,q2,b,q) \
do { \
(q)[0] = (q1)[0] * (1 - (b)) + (q2)[0] * (b); \
(q)[1] = (q1)[1] * (1 - (b)) + (q2)[1] * (b); \
(q)[2] = (q1)[2] * (1 - (b)) + (q2)[2] * (b); \
(q)[3] = (q1)[3] * (1 - (b)) + (q2)[3] * (b); \
} while (0)
//For printf etc
#define QuatExpand(q) (q)[0], (q)[1], (q)[2], (q)[3]
void QuatMult (const quat_t q1, const quat_t q2, quat_t out);
void QuatMultVec (const quat_t q, const vec3_t v, vec3_t out);
void QuatInverse (const quat_t in, quat_t out);
void QuatExp (const quat_t a, quat_t b);
void QuatToMatrix (const quat_t q, vec_t *m, int homogenous, int vertical);
//@}
#endif // __QF_math_quaternion_h