quakeforge/libs/video/renderer/sw/sw_rmain.c

966 lines
23 KiB
C

/*
r_main.c
(description)
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
static const char rcsid[] =
"$Id$";
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <math.h>
#include "QF/cmd.h"
#include "QF/console.h"
#include "QF/cvar.h"
#include "QF/locs.h"
#include "QF/mathlib.h"
#include "QF/render.h"
#include "QF/screen.h"
#include "QF/sound.h"
#include "QF/sys.h"
#include "r_cvar.h"
#include "r_dynamic.h"
#include "r_local.h"
#include "view.h"
void *colormap;
vec3_t viewlightvec;
alight_t r_viewlighting = { 128, 192, viewlightvec };
int r_numallocatededges;
qboolean r_drawpolys;
qboolean r_drawculledpolys;
qboolean r_worldpolysbacktofront;
qboolean r_recursiveaffinetriangles = true;
int r_pixbytes = 1;
float r_aliasuvscale = 1.0;
int r_outofsurfaces;
int r_outofedges;
int r_init = 0;
qboolean r_dowarp, r_dowarpold, r_viewchanged;
int numbtofpolys;
btofpoly_t *pbtofpolys;
mvertex_t *r_pcurrentvertbase;
int c_surf;
int r_maxsurfsseen, r_maxedgesseen, r_cnumsurfs;
qboolean r_surfsonstack;
int r_clipflags;
byte *r_warpbuffer;
byte *r_stack_start;
qboolean r_fov_greater_than_90;
entity_t r_worldentity;
// view origin
vec3_t vup, base_vup;
vec3_t vpn, base_vpn;
vec3_t vright, base_vright;
vec3_t r_origin;
// screen size info
refdef_t r_refdef;
float xcenter, ycenter;
float xscale, yscale;
float xscaleinv, yscaleinv;
float xscaleshrink, yscaleshrink;
float aliasxscale, aliasyscale, aliasxcenter, aliasycenter;
int screenwidth;
float pixelAspect;
float screenAspect;
float verticalFieldOfView;
float xOrigin, yOrigin;
mplane_t screenedge[4];
// refresh flags
int r_framecount = 1; // so frame counts initialized to 0 don't match
int r_visframecount;
int d_spanpixcount;
int r_polycount;
int r_drawnpolycount;
int r_wholepolycount;
int *pfrustum_indexes[4];
int r_frustum_indexes[4 * 6];
int reinit_surfcache = 1; // if 1, surface cache is currently empty
// and must be reinitialized for current
// cache size
mleaf_t *r_viewleaf, *r_oldviewleaf;
float r_aliastransition, r_resfudge;
int d_lightstylevalue[256]; // 8.8 fraction of base light value
float dp_time1, dp_time2, db_time1, db_time2, rw_time1, rw_time2;
float se_time1, se_time2, de_time1, de_time2, dv_time1, dv_time2;
void R_MarkLeaves (void);
void R_LoadSky_f (void);
void R_InitVars (void);
void
R_Init (void)
{
int dummy;
// get stack position so we can guess if we are going to overflow
r_stack_start = (byte *) & dummy;
R_InitVars ();
R_InitTurb ();
Cmd_AddCommand ("timerefresh", R_TimeRefresh_f, "Tests the current "
"refresh rate for the current location");
Cmd_AddCommand ("pointfile", R_ReadPointFile_f, "Load a pointfile to "
"determine map leaks");
Cmd_AddCommand ("loadsky", R_LoadSky_f, "Load a skybox");
Cvar_SetValue (r_maxedges, (float) NUMSTACKEDGES);
Cvar_SetValue (r_maxsurfs, (float) NUMSTACKSURFACES);
view_clipplanes[0].leftedge = true;
view_clipplanes[1].rightedge = true;
view_clipplanes[1].leftedge = view_clipplanes[2].leftedge =
view_clipplanes[3].leftedge = false;
view_clipplanes[0].rightedge = view_clipplanes[2].rightedge =
view_clipplanes[3].rightedge = false;
r_refdef.xOrigin = XCENTERING;
r_refdef.yOrigin = YCENTERING;
// TODO: collect 386-specific code in one place
#ifdef PIC
# undef USE_INTEL_ASM //XXX asm pic hack
#endif
#ifdef USE_INTEL_ASM
Sys_MakeCodeWriteable ((long) R_EdgeCodeStart,
(long) R_EdgeCodeEnd - (long) R_EdgeCodeStart);
#endif // USE_INTEL_ASM
D_Init ();
}
void
R_NewMap (model_t *worldmodel, struct model_s **models, int num_models)
{
int i;
memset (&r_worldentity, 0, sizeof (r_worldentity));
r_worldentity.model = worldmodel;
// clear out efrags in case the level hasn't been reloaded
// FIXME: is this one short?
for (i = 0; i < r_worldentity.model->numleafs; i++)
r_worldentity.model->leafs[i].efrags = NULL;
r_viewleaf = NULL;
R_ClearParticles ();
r_cnumsurfs = r_maxsurfs->int_val;
if (r_cnumsurfs <= MINSURFACES)
r_cnumsurfs = MINSURFACES;
if (r_cnumsurfs > NUMSTACKSURFACES) {
surfaces = Hunk_AllocName (r_cnumsurfs * sizeof (surf_t), "surfaces");
surface_p = surfaces;
surf_max = &surfaces[r_cnumsurfs];
r_surfsonstack = false;
// surface 0 doesn't really exist; it's just a dummy because index 0
// is used to indicate no edge attached to surface
surfaces--;
R_SurfacePatch ();
} else {
r_surfsonstack = true;
}
r_maxedgesseen = 0;
r_maxsurfsseen = 0;
r_numallocatededges = r_maxedges->int_val;
if (r_numallocatededges < MINEDGES)
r_numallocatededges = MINEDGES;
if (r_numallocatededges <= NUMSTACKEDGES) {
auxedges = NULL;
} else {
auxedges = Hunk_AllocName (r_numallocatededges * sizeof (edge_t),
"edges");
}
r_dowarpold = false;
r_viewchanged = false;
}
void
R_SetVrect (vrect_t *pvrectin, vrect_t *pvrect, int lineadj)
{
int h;
float size;
qboolean full = false;
if (scr_viewsize->int_val >= 100) {
size = 100.0;
full = true;
lineadj = 0;
} else {
size = scr_viewsize->int_val;
}
if (r_force_fullscreen) {
full = true;
size = 100.0;
lineadj = 0;
}
size /= 100.0;
h = pvrectin->height - lineadj;
if (full) {
pvrect->width = pvrectin->width;
} else {
pvrect->width = pvrectin->width * size;
}
if (pvrect->width < 96) {
size = 96.0 / pvrectin->width;
pvrect->width = 96; // min for icons
}
pvrect->width &= ~7;
pvrect->height = pvrectin->height * size;
if (pvrect->height > h)
pvrect->height = h;
pvrect->height &= ~1;
pvrect->x = (pvrectin->width - pvrect->width) / 2;
if (full)
pvrect->y = 0;
else
pvrect->y = (h - pvrect->height) / 2;
}
/*
R_ViewChanged
Called every time the vid structure or r_refdef changes.
Guaranteed to be called before the first refresh
*/
void
R_ViewChanged (vrect_t *pvrect, int lineadj, float aspect)
{
int i;
float res_scale;
r_viewchanged = true;
R_SetVrect (pvrect, &r_refdef.vrect, lineadj);
r_refdef.horizontalFieldOfView = 2.0 * tan (r_refdef.fov_x / 360 * M_PI);
r_refdef.fvrectx = (float) r_refdef.vrect.x;
r_refdef.fvrectx_adj = (float) r_refdef.vrect.x - 0.5;
r_refdef.vrect_x_adj_shift20 = (r_refdef.vrect.x << 20) + (1 << 19) - 1;
r_refdef.fvrecty = (float) r_refdef.vrect.y;
r_refdef.fvrecty_adj = (float) r_refdef.vrect.y - 0.5;
r_refdef.vrectright = r_refdef.vrect.x + r_refdef.vrect.width;
r_refdef.vrectright_adj_shift20 =
(r_refdef.vrectright << 20) + (1 << 19) - 1;
r_refdef.fvrectright = (float) r_refdef.vrectright;
r_refdef.fvrectright_adj = (float) r_refdef.vrectright - 0.5;
r_refdef.vrectrightedge = (float) r_refdef.vrectright - 0.99;
r_refdef.vrectbottom = r_refdef.vrect.y + r_refdef.vrect.height;
r_refdef.fvrectbottom = (float) r_refdef.vrectbottom;
r_refdef.fvrectbottom_adj = (float) r_refdef.vrectbottom - 0.5;
r_refdef.aliasvrect.x = (int) (r_refdef.vrect.x * r_aliasuvscale);
r_refdef.aliasvrect.y = (int) (r_refdef.vrect.y * r_aliasuvscale);
r_refdef.aliasvrect.width = (int) (r_refdef.vrect.width * r_aliasuvscale);
r_refdef.aliasvrect.height = (int) (r_refdef.vrect.height *
r_aliasuvscale);
r_refdef.aliasvrectright = r_refdef.aliasvrect.x +
r_refdef.aliasvrect.width;
r_refdef.aliasvrectbottom = r_refdef.aliasvrect.y +
r_refdef.aliasvrect.height;
pixelAspect = aspect;
xOrigin = r_refdef.xOrigin;
yOrigin = r_refdef.yOrigin;
screenAspect = r_refdef.vrect.width * pixelAspect / r_refdef.vrect.height;
// 320*200 1.0 pixelAspect = 1.6 screenAspect
// 320*240 1.0 pixelAspect = 1.3333 screenAspect
// proper 320*200 pixelAspect = 0.8333333
verticalFieldOfView = r_refdef.horizontalFieldOfView / screenAspect;
// values for perspective projection
// if math were exact, the values would range from 0.5 to to range+0.5
// hopefully they wll be in the 0.000001 to range+.999999 and truncate
// the polygon rasterization will never render in the first row or column
// but will definately render in the [range] row and column, so adjust the
// buffer origin to get an exact edge to edge fill
xcenter = ((float) r_refdef.vrect.width * XCENTERING) +
r_refdef.vrect.x - 0.5;
aliasxcenter = xcenter * r_aliasuvscale;
ycenter = ((float) r_refdef.vrect.height * YCENTERING) +
r_refdef.vrect.y - 0.5;
aliasycenter = ycenter * r_aliasuvscale;
xscale = r_refdef.vrect.width / r_refdef.horizontalFieldOfView;
aliasxscale = xscale * r_aliasuvscale;
xscaleinv = 1.0 / xscale;
yscale = xscale * pixelAspect;
aliasyscale = yscale * r_aliasuvscale;
yscaleinv = 1.0 / yscale;
xscaleshrink = (r_refdef.vrect.width - 6) / r_refdef.horizontalFieldOfView;
yscaleshrink = xscaleshrink * pixelAspect;
// left side clip
screenedge[0].normal[0] = -1.0 / (xOrigin *
r_refdef.horizontalFieldOfView);
screenedge[0].normal[1] = 0;
screenedge[0].normal[2] = 1;
screenedge[0].type = PLANE_ANYZ;
// right side clip
screenedge[1].normal[0] = 1.0 / ((1.0 - xOrigin) *
r_refdef.horizontalFieldOfView);
screenedge[1].normal[1] = 0;
screenedge[1].normal[2] = 1;
screenedge[1].type = PLANE_ANYZ;
// top side clip
screenedge[2].normal[0] = 0;
screenedge[2].normal[1] = -1.0 / (yOrigin * verticalFieldOfView);
screenedge[2].normal[2] = 1;
screenedge[2].type = PLANE_ANYZ;
// bottom side clip
screenedge[3].normal[0] = 0;
screenedge[3].normal[1] = 1.0 / ((1.0 - yOrigin) * verticalFieldOfView);
screenedge[3].normal[2] = 1;
screenedge[3].type = PLANE_ANYZ;
for (i = 0; i < 4; i++)
VectorNormalize (screenedge[i].normal);
res_scale = sqrt ((double) (r_refdef.vrect.width * r_refdef.vrect.height) /
(320.0 * 152.0)) * (2.0 /
r_refdef.horizontalFieldOfView);
r_aliastransition = r_aliastransbase->value * res_scale;
r_resfudge = r_aliastransadj->value * res_scale;
if (scr_fov->value <= 90.0)
r_fov_greater_than_90 = false;
else
r_fov_greater_than_90 = true;
// TODO: collect 386-specific code in one place
#ifdef USE_INTEL_ASM
Sys_MakeCodeWriteable ((long) R_Surf8Start,
(long) R_Surf8End - (long) R_Surf8Start);
colormap = vid.colormap8;
R_SurfPatch ();
#endif // USE_INTEL_ASM
D_ViewChanged ();
}
void
R_MarkLeaves (void)
{
byte *vis;
mnode_t *node;
mleaf_t *leaf;
msurface_t **mark;
int c;
int i;
if (r_oldviewleaf == r_viewleaf)
return;
r_visframecount++;
r_oldviewleaf = r_viewleaf;
vis = Mod_LeafPVS (r_viewleaf, r_worldentity.model);
for (i = 0; i < r_worldentity.model->numleafs; i++) {
if (vis[i >> 3] & (1 << (i & 7))) {
leaf = &r_worldentity.model->leafs[i + 1];
mark = leaf->firstmarksurface;
c = leaf->nummarksurfaces;
if (c) {
do {
(*mark)->visframe = r_visframecount;
mark++;
} while (--c);
}
node = (mnode_t *) leaf;
do {
if (node->visframe == r_visframecount)
break;
node->visframe = r_visframecount;
node = node->parent;
} while (node);
}
}
}
static void
R_ShowNearestLoc (void)
{
dlight_t *dl;
location_t *nearloc;
vec3_t trueloc;
if (r_drawentities->int_val)
return;
nearloc = locs_find (r_origin);
if (nearloc) {
dl = R_AllocDlight (4096);
if (dl) {
VectorCopy (nearloc->loc, dl->origin);
dl->radius = 200;
dl->die = r_realtime + 0.1;
dl->color[1] = 1;
}
VectorCopy(nearloc->loc, trueloc);
R_RunParticleEffect(trueloc, vec3_origin, 252, 10);
}
}
void
R_DrawEntitiesOnList (void)
{
int i, j;
int lnum;
alight_t lighting;
// FIXME: remove and do real lighting
float lightvec[3] = { -1, 0, 0 };
vec3_t dist;
float add;
if (!r_drawentities->int_val) {
R_ShowNearestLoc();
return;
}
for (i = 0; i < r_numvisedicts; i++) {
currententity = r_visedicts[i];
switch (currententity->model->type) {
case mod_sprite:
VectorCopy (currententity->origin, r_entorigin);
VectorSubtract (r_origin, r_entorigin, modelorg);
R_DrawSprite ();
break;
case mod_alias:
VectorCopy (currententity->origin, r_entorigin);
VectorSubtract (r_origin, r_entorigin, modelorg);
// see if the bounding box lets us trivially reject, also
// sets trivial accept status
if (R_AliasCheckBBox ()) {
j = R_LightPoint (currententity->origin);
lighting.ambientlight = j;
lighting.shadelight = j;
lighting.plightvec = lightvec;
for (lnum = 0; lnum < r_maxdlights; lnum++) {
if (r_dlights[lnum].die >= r_realtime) {
VectorSubtract (currententity->origin,
r_dlights[lnum].origin, dist);
add = r_dlights[lnum].radius - Length (dist);
if (add > 0)
lighting.ambientlight += add;
}
}
// clamp lighting so it doesn't overbright as much
if (lighting.ambientlight > 128)
lighting.ambientlight = 128;
if (lighting.ambientlight + lighting.shadelight > 192)
lighting.shadelight = 192 - lighting.ambientlight;
R_AliasDrawModel (&lighting);
}
break;
default:
break;
}
}
}
void
R_DrawViewModel (void)
{
// FIXME: remove and do real lighting
float lightvec[3] = { -1, 0, 0 };
int j;
int lnum;
vec3_t dist;
float add;
dlight_t *dl;
if (r_inhibit_viewmodel
|| !r_drawviewmodel->int_val
|| !r_drawentities->int_val)
return;
currententity = r_view_model;
if (!currententity->model)
return;
VectorCopy (currententity->origin, r_entorigin);
VectorSubtract (r_origin, r_entorigin, modelorg);
VectorCopy (vup, viewlightvec);
VectorInverse (viewlightvec);
j = R_LightPoint (currententity->origin);
if (j < 24)
j = 24; // always give some light on gun
r_viewlighting.ambientlight = j;
r_viewlighting.shadelight = j;
// add dynamic lights
for (lnum = 0; lnum < r_maxdlights; lnum++) {
dl = &r_dlights[lnum];
if (!dl->radius)
continue;
if (!dl->radius)
continue;
if (dl->die < r_realtime)
continue;
VectorSubtract (currententity->origin, dl->origin, dist);
add = dl->radius - Length (dist);
if (add > 0)
r_viewlighting.ambientlight += add;
}
// clamp lighting so it doesn't overbright as much
if (r_viewlighting.ambientlight > 128)
r_viewlighting.ambientlight = 128;
if (r_viewlighting.ambientlight + r_viewlighting.shadelight > 192)
r_viewlighting.shadelight = 192 - r_viewlighting.ambientlight;
r_viewlighting.plightvec = lightvec;
R_AliasDrawModel (&r_viewlighting);
}
int
R_BmodelCheckBBox (model_t *clmodel, float *minmaxs)
{
int i, *pindex, clipflags;
vec3_t acceptpt, rejectpt;
double d;
clipflags = 0;
if (currententity->angles[0] || currententity->angles[1]
|| currententity->angles[2]) {
for (i = 0; i < 4; i++) {
d = DotProduct (currententity->origin, view_clipplanes[i].normal);
d -= view_clipplanes[i].dist;
if (d <= -clmodel->radius)
return BMODEL_FULLY_CLIPPED;
if (d <= clmodel->radius)
clipflags |= (1 << i);
}
} else {
for (i = 0; i < 4; i++) {
// generate accept and reject points
// FIXME: do with fast look-ups or integer tests based on the
// sign bit of the floating point values
pindex = pfrustum_indexes[i];
rejectpt[0] = minmaxs[pindex[0]];
rejectpt[1] = minmaxs[pindex[1]];
rejectpt[2] = minmaxs[pindex[2]];
d = DotProduct (rejectpt, view_clipplanes[i].normal);
d -= view_clipplanes[i].dist;
if (d <= 0)
return BMODEL_FULLY_CLIPPED;
acceptpt[0] = minmaxs[pindex[3 + 0]];
acceptpt[1] = minmaxs[pindex[3 + 1]];
acceptpt[2] = minmaxs[pindex[3 + 2]];
d = DotProduct (acceptpt, view_clipplanes[i].normal);
d -= view_clipplanes[i].dist;
if (d <= 0)
clipflags |= (1 << i);
}
}
return clipflags;
}
void
R_DrawBEntitiesOnList (void)
{
int i, j, k, clipflags;
vec3_t oldorigin;
model_t *clmodel;
float minmaxs[6];
if (!r_drawentities->int_val)
return;
VectorCopy (modelorg, oldorigin);
insubmodel = true;
for (i = 0; i < r_numvisedicts; i++) {
currententity = r_visedicts[i];
switch (currententity->model->type) {
case mod_brush:
clmodel = currententity->model;
// see if the bounding box lets us trivially reject, also
// sets trivial accept status
for (j = 0; j < 3; j++) {
minmaxs[j] = currententity->origin[j] + clmodel->mins[j];
minmaxs[3 + j] = currententity->origin[j] +
clmodel->maxs[j];
}
clipflags = R_BmodelCheckBBox (clmodel, minmaxs);
if (clipflags != BMODEL_FULLY_CLIPPED) {
VectorCopy (currententity->origin, r_entorigin);
VectorSubtract (r_origin, r_entorigin, modelorg);
// FIXME: is this needed?
VectorCopy (modelorg, r_worldmodelorg);
r_pcurrentvertbase = clmodel->vertexes;
// FIXME: stop transforming twice
R_RotateBmodel ();
// calculate dynamic lighting for bmodel if it's not an
// instanced model
if (clmodel->firstmodelsurface != 0) {
vec3_t lightorigin;
for (k = 0; k < r_maxdlights; k++) {
if ((r_dlights[k].die < r_realtime) ||
(!r_dlights[k].radius)) continue;
VectorSubtract (r_dlights[k].origin,
currententity->origin,
lightorigin);
R_RecursiveMarkLights (lightorigin, &r_dlights[k],
1 << k, clmodel->nodes +
clmodel->hulls[0].firstclipnode);
}
}
// if the driver wants polygons, deliver those.
// Z-buffering is on at this point, so no clipping to the
// world tree is needed, just frustum clipping
if (r_drawpolys | r_drawculledpolys) {
R_ZDrawSubmodelPolys (clmodel);
} else {
r_pefragtopnode = NULL;
for (j = 0; j < 3; j++) {
r_emins[j] = minmaxs[j];
r_emaxs[j] = minmaxs[3 + j];
}
R_SplitEntityOnNode2 (r_worldentity.model->nodes);
if (r_pefragtopnode) {
currententity->topnode = r_pefragtopnode;
if (r_pefragtopnode->contents >= 0) {
// not a leaf; has to be clipped to the world
// BSP
r_clipflags = clipflags;
R_DrawSolidClippedSubmodelPolygons (clmodel);
} else {
// falls entirely in one leaf, so we just put
// all the edges in the edge list and let 1/z
// sorting handle drawing order
R_DrawSubmodelPolygons (clmodel, clipflags);
}
currententity->topnode = NULL;
}
}
// put back world rotation and frustum clipping
// FIXME: R_RotateBmodel should just work off base_vxx
VectorCopy (base_vpn, vpn);
VectorCopy (base_vup, vup);
VectorCopy (base_vright, vright);
VectorCopy (base_modelorg, modelorg);
VectorCopy (oldorigin, modelorg);
R_TransformFrustum ();
}
break;
default:
break;
}
}
insubmodel = false;
}
void
R_EdgeDrawing (void)
{
edge_t ledges[NUMSTACKEDGES +
((CACHE_SIZE - 1) / sizeof (edge_t)) + 1];
surf_t lsurfs[NUMSTACKSURFACES +
((CACHE_SIZE - 1) / sizeof (surf_t)) + 1];
if (auxedges) {
r_edges = auxedges;
} else {
r_edges = (edge_t *)
(((long) &ledges[0] + CACHE_SIZE - 1) & ~(CACHE_SIZE - 1));
}
if (r_surfsonstack) {
surfaces = (surf_t *)
(((long) &lsurfs[0] + CACHE_SIZE - 1) & ~(CACHE_SIZE - 1));
surf_max = &surfaces[r_cnumsurfs];
// surface 0 doesn't really exist; it's just a dummy because index 0
// is used to indicate no edge attached to surface
surfaces--;
R_SurfacePatch ();
}
R_BeginEdgeFrame ();
if (r_dspeeds->int_val) {
rw_time1 = Sys_DoubleTime ();
}
R_RenderWorld ();
if (r_drawculledpolys)
R_ScanEdges ();
// only the world can be drawn back to front with no z reads or compares,
// just z writes, so have the driver turn z compares on now
D_TurnZOn ();
if (r_dspeeds->int_val) {
rw_time2 = Sys_DoubleTime ();
db_time1 = rw_time2;
}
R_DrawBEntitiesOnList ();
if (r_dspeeds->int_val) {
db_time2 = Sys_DoubleTime ();
se_time1 = db_time2;
}
if (!r_dspeeds->int_val) {
VID_UnlockBuffer ();
S_ExtraUpdate (); // don't let sound get messed up if going slow
VID_LockBuffer ();
}
if (!(r_drawpolys | r_drawculledpolys))
R_ScanEdges ();
}
/*
R_RenderView
r_refdef must be set before the first call
*/
void
R_RenderView_ (void)
{
byte warpbuffer[WARP_WIDTH * WARP_HEIGHT];
r_warpbuffer = warpbuffer;
if (r_timegraph->int_val || r_speeds->int_val || r_dspeeds->int_val)
r_time1 = Sys_DoubleTime ();
R_SetupFrame ();
R_MarkLeaves (); // done here so we know if we're in water
R_PushDlights (vec3_origin);
// make FDIV fast. This reduces timing precision after we've been running for a
// while, so we don't do it globally. This also sets chop mode, and we do it
// here so that setup stuff like the refresh area calculations match what's
// done in screen.c
Sys_LowFPPrecision ();
if (!r_worldentity.model)
Sys_Error ("R_RenderView: NULL worldmodel");
if (!r_dspeeds->int_val) {
VID_UnlockBuffer ();
S_ExtraUpdate (); // don't let sound get messed up if going slow
VID_LockBuffer ();
}
R_EdgeDrawing ();
if (!r_dspeeds->int_val) {
VID_UnlockBuffer ();
S_ExtraUpdate (); // don't let sound get messed up if going slow
VID_LockBuffer ();
}
if (r_dspeeds->int_val) {
se_time2 = Sys_DoubleTime ();
de_time1 = se_time2;
}
R_DrawEntitiesOnList ();
if (r_dspeeds->int_val) {
de_time2 = Sys_DoubleTime ();
dv_time1 = de_time2;
}
R_DrawViewModel ();
if (r_dspeeds->int_val) {
dv_time2 = Sys_DoubleTime ();
dp_time1 = Sys_DoubleTime ();
}
R_DrawParticles ();
if (r_dspeeds->int_val)
dp_time2 = Sys_DoubleTime ();
if (r_dowarp)
D_WarpScreen ();
V_SetContentsColor (r_viewleaf->contents);
if (r_timegraph->int_val)
R_TimeGraph ();
if (r_zgraph->int_val)
R_ZGraph ();
if (r_aliasstats->int_val)
R_PrintAliasStats ();
if (r_speeds->int_val)
R_PrintTimes ();
if (r_dspeeds->int_val)
R_PrintDSpeeds ();
if (r_reportsurfout->int_val && r_outofsurfaces)
Con_Printf ("Short %d surfaces\n", r_outofsurfaces);
if (r_reportedgeout->int_val && r_outofedges)
Con_Printf ("Short roughly %d edges\n", r_outofedges * 2 / 3);
// back to high floating-point precision
Sys_HighFPPrecision ();
}
void
R_RenderView (void)
{
int dummy;
int delta;
delta = (byte *) & dummy - r_stack_start;
if (delta < -10000 || delta > 10000)
Sys_Error ("R_RenderView: called without enough stack");
if (Hunk_LowMark () & 3)
Sys_Error ("Hunk is missaligned");
if ((long) (&dummy) & 3)
Sys_Error ("Stack is missaligned");
if ((long) (&r_warpbuffer) & 3)
Sys_Error ("Globals are missaligned");
R_RenderView_ ();
}
void
R_InitTurb (void)
{
int i;
for (i = 0; i < (SIN_BUFFER_SIZE); i++) {
sintable[i] = AMP + sin (i * 3.14159 * 2 / CYCLE) * AMP;
intsintable[i] = AMP2 + sin (i * 3.14159 * 2 / CYCLE) * AMP2;
// AMP2 not 20
}
}