quakeforge/tools/qfcc/source/function.c

557 lines
12 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
function.c
QC function support code
Copyright (C) 2002 Bill Currie
Author: Bill Currie <bill@taniwha.org>
Date: 2002/5/7
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
static __attribute__ ((used)) const char rcsid[] =
"$Id$";
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "QF/dstring.h"
#include "QF/hash.h"
#include "QF/va.h"
#include "qfcc.h"
#include "debug.h"
#include "def.h"
#include "emit.h"
#include "expr.h"
#include "function.h"
#include "immediate.h"
#include "opcodes.h"
#include "options.h"
#include "reloc.h"
#include "type.h"
static param_t *free_params;
static function_t *free_functions;
static hashtab_t *overloaded_functions;
static hashtab_t *function_map;
static const char *
ol_func_get_key (void *_f, void *unused)
{
overloaded_function_t *f = (overloaded_function_t *) _f;
return f->full_name;
}
static const char *
func_map_get_key (void *_f, void *unused)
{
overloaded_function_t *f = (overloaded_function_t *) _f;
return f->name;
}
param_t *
new_param (const char *selector, type_t *type, const char *name)
{
param_t *param;
ALLOC (4096, param_t, params, param);
param->next = 0;
param->selector = selector;
param->type = type;
param->name = name;
return param;
}
param_t *
_reverse_params (param_t *params, param_t *next)
{
param_t *p = params;
if (params->next)
p = _reverse_params (params->next, params);
params->next = next;
return p;
}
param_t *
reverse_params (param_t *params)
{
if (!params)
return 0;
return _reverse_params (params, 0);
}
param_t *
copy_params (param_t *params)
{
param_t *n_parms = 0, **p = &n_parms;
while (params) {
*p = new_param (params->selector, params->type, params->name);
params = params->next;
p = &(*p)->next;
}
return n_parms;
}
type_t *
parse_params (type_t *type, param_t *parms)
{
param_t *p;
type_t new;
memset (&new, 0, sizeof (new));
new.type = ev_func;
new.aux_type = type;
new.num_parms = 0;
for (p = parms; p; p = p->next) {
if (new.num_parms > MAX_PARMS) {
error (0, "too many params");
return type;
}
if (!p->selector && !p->type && !p->name) {
if (p->next) {
error (0, "internal error");
abort ();
}
new.num_parms = -(new.num_parms + 1);
} else if (p->type) {
new.parm_types[new.num_parms] = p->type;
new.num_parms++;
}
}
//print_type (&new); puts("");
return find_type (&new);
}
overloaded_function_t *
get_function (const char *name, type_t *type, int overload, int create)
{
const char *full_name;
overloaded_function_t *func;
if (!overloaded_functions) {
overloaded_functions = Hash_NewTable (1021, ol_func_get_key, 0, 0);
function_map = Hash_NewTable (1021, func_map_get_key, 0, 0);
}
name = save_string (name);
full_name = save_string (va ("%s|%s", name, encode_params (type)));
func = Hash_Find (overloaded_functions, full_name);
if (func) {
if (func->type != type) {
error (0, "can't overload on return types");
return func;
}
return func;
}
if (!create)
return 0;
func = Hash_Find (function_map, name);
if (func) {
if (!overload && !func->overloaded) {
expr_t *e = new_expr ();
e->line = func->line;
e->file = func->file;
warning (0, "creating overloaded function %s without @overload",
full_name);
warning (e, "(previous function is %s)", func->full_name);
}
overload = 1;
}
func = calloc (1, sizeof (overloaded_function_t));
func->name = name;
func->full_name = full_name;
func->type = type;
func->overloaded = overload;
func->file = pr.source_file;
func->line = pr.source_line;
Hash_Add (overloaded_functions, func);
Hash_Add (function_map, func);
return func;
}
def_t *
get_function_def (const char *name, struct type_s *type,
scope_t *scope, storage_class_t storage,
int overload, int create)
{
overloaded_function_t *func;
func = get_function (name, type, overload, create);
if (func && func->overloaded)
name = func->full_name;
return get_def (type, name, scope, storage);
}
// NOTE sorts the list in /reverse/ order
static int
func_compare (const void *a, const void *b)
{
overloaded_function_t *fa = *(overloaded_function_t **) a;
overloaded_function_t *fb = *(overloaded_function_t **) b;
type_t *ta = fa->type;
type_t *tb = fb->type;
int na = ta->num_parms;
int nb = tb->num_parms;
int ret, i;
if (na < 0)
na = ~na;
if (nb < 0)
nb = ~nb;
if (na != nb)
return nb - na;
if ((ret = (fb->type->num_parms - fa->type->num_parms)))
return ret;
for (i = 0; i < na && i < nb; i++)
if (ta->parm_types[i] != tb->parm_types[i])
return (long)(tb->parm_types[i] - ta->parm_types[i]);
return 0;
}
expr_t *
find_function (expr_t *fexpr, expr_t *params)
{
expr_t *e;
int i, j, func_count, parm_count, reported = 0;
overloaded_function_t *f, dummy, *best = 0;
type_t type;
void **funcs, *dummy_p = &dummy;
if (fexpr->type != ex_name)
return fexpr;
memset (&type, 0, sizeof (type));
for (e = params; e; e = e->next) {
if (e->type == ex_error)
return e;
type.num_parms++;
}
if (type.num_parms > MAX_PARMS)
return fexpr;
for (i = 0, e = params; e; i++, e = e->next) {
type.parm_types[type.num_parms - 1 - i] = get_type (e);
if (e->type == ex_error)
return e;
}
funcs = Hash_FindList (function_map, fexpr->e.string_val);
if (!funcs)
return fexpr;
for (func_count = 0; funcs[func_count]; func_count++)
;
if (func_count < 2) {
free (funcs);
return fexpr;
}
type.aux_type = ((overloaded_function_t *) funcs[0])->type->aux_type;
dummy.type = find_type (&type);
qsort (funcs, func_count, sizeof (void *), func_compare);
dummy.full_name = save_string (va ("%s|%s", fexpr->e.string_val,
encode_params (&type)));
dummy_p = bsearch (&dummy_p, funcs, func_count, sizeof (void *),
func_compare);
if (dummy_p) {
f = (overloaded_function_t *) *(void **) dummy_p;
if (f->overloaded)
fexpr->e.string_val = f->full_name;
free (funcs);
return fexpr;
}
for (i = 0; i < func_count; i++) {
f = (overloaded_function_t *) funcs[i];
parm_count = f->type->num_parms;
if ((parm_count >= 0 && parm_count != type.num_parms)
|| (parm_count < 0 && ~parm_count > type.num_parms)) {
funcs[i] = 0;
continue;
}
if (parm_count < 0)
parm_count = ~parm_count;
for (j = 0; j < parm_count; j++) {
if (!type_assignable (f->type->parm_types[j],
type.parm_types[j])) {
funcs[i] = 0;
break;
}
}
if (j < parm_count)
continue;
}
for (i = 0; i < func_count; i++) {
f = (overloaded_function_t *) funcs[i];
if (f) {
if (!best) {
best = f;
} else {
if (!reported) {
reported = 1;
error (fexpr, "unable to disambiguate %s",
dummy.full_name);
error (fexpr, "possible match: %s", best->full_name);
}
error (fexpr, "possible match: %s", f->full_name);
}
}
}
if (reported)
return fexpr;
if (best) {
if (best->overloaded)
fexpr->e.string_val = best->full_name;
free (funcs);
return fexpr;
}
error (fexpr, "unable to find function matching %s", dummy.full_name);
free (funcs);
return fexpr;
}
static void
check_function (def_t *func, param_t *params)
{
param_t *p;
int i;
if (!type_size (func->type->aux_type)) {
error (0, "return type is an incomplete type");
func->type->aux_type = &type_void;//FIXME
}
if (type_size (func->type->aux_type) > type_size (&type_param)) {
error (0, "return value too large to be passed by value");
func->type->aux_type = &type_void;//FIXME
}
for (p = params, i = 0; p; p = p->next, i++) {
if (!p->selector && !p->type && !p->name)
continue; // ellipsis marker
if (!p->type)
continue; // non-param selector
if (!type_size (p->type))
error (0, "parameter %d (‘%s’) has incomplete type",
i + 1, p->name);
if (type_size (p->type) > type_size (&type_param))
error (0, "param %d (‘%s’) is too large to be passed by value",
i + 1, p->name);
}
}
void
build_scope (function_t *f, def_t *func, param_t *params)
{
int i;
def_t *def;
param_t *p;
def_t *args = 0;
int parm_ofs[MAX_PARMS];
check_function (func, params);
f->scope = new_scope (sc_params, new_defspace (), pr.scope);
if (func->type->num_parms < 0) {
args = get_def (&type_va_list, ".args", f->scope, st_local);
args->used = 1;
def_initialized (args);
}
for (p = params, i = 0; p; p = p->next) {
if (!p->selector && !p->type && !p->name)
continue; // ellipsis marker
if (!p->type)
continue; // non-param selector
def = get_def (p->type, p->name, f->scope, st_local);
parm_ofs[i] = def->ofs;
if (i > 0 && parm_ofs[i] < parm_ofs[i - 1]) {
error (0, "bad parm order");
abort ();
}
//printf ("%s%s %d\n", p == params ? "" : " ", p->name, def->ofs);
def->used = 1; // don't warn for unused params
def_initialized (def); // params are assumed to be initialized
i++;
}
if (args) {
while (i < MAX_PARMS) {
def = get_def (&type_vector, 0, f->scope, st_local);//XXX param
def->used = 1;
i++;
}
}
}
function_t *
new_function (const char *name)
{
function_t *f;
ALLOC (1024, function_t, functions, f);
f->s_name = ReuseString (name);
f->s_file = pr.source_file;
return f;
}
void
add_function (function_t *f)
{
*pr.func_tail = f;
pr.func_tail = &f->next;
f->function_num = pr.num_functions++;
if (options.code.debug)
f->aux = new_auxfunction ();
}
function_t *
build_code_function (function_t *f, expr_t *state_expr, expr_t *statements)
{
build_function (f);
if (state_expr) {
state_expr->next = statements;
emit_function (f, state_expr);
} else {
emit_function (f, statements);
}
finish_function (f);
return f;
}
function_t *
build_builtin_function (def_t *def, expr_t *bi_val)
{
function_t *f;
if (def->type->type != ev_func) {
error (bi_val, "%s is not a function", def->name);
return 0;
}
if (def->constant) {
error (bi_val, "%s redefined", def->name);
return 0;
}
if (bi_val->type != ex_integer && bi_val->type != ex_float) {
error (bi_val, "invalid constant for = #");
return 0;
}
f = new_function (def->name);
add_function (f);
f->builtin = bi_val->type == ex_integer ? bi_val->e.integer_val
: (int)bi_val->e.float_val;
f->def = def;
reloc_def_func (f, def->ofs);
build_function (f);
finish_function (f);
return f;
}
void
build_function (function_t *f)
{
f->def->constant = 1;
f->def->nosave = 1;
f->def->initialized = 1;
G_FUNCTION (f->def->ofs) = f->function_num;
}
void
finish_function (function_t *f)
{
if (f->aux) {
def_t *def;
f->aux->function = f->function_num;
if (f->scope) {
for (def = f->scope->head; def; def = def->def_next) {
if (def->name) {
def_to_ddef (def, new_local (), 0);
f->aux->num_locals++;
}
}
}
}
}
void
emit_function (function_t *f, expr_t *e)
{
//printf (" %s =\n", f->def->name);
if (f->aux)
lineno_base = f->aux->source_line;
while (f->var_init) {
emit_expr (f->var_init);
f->var_init = f->var_init->next;
}
current_scope = f->scope;
while (e) {
//printf ("%d ", pr.source_line);
//print_expr (e);
//puts("");
emit_expr (e);
e = e->next;
}
emit_statement (0, op_done, 0, 0, 0);
flush_scope (current_scope, 0);
current_scope = pr.scope;
reset_tempdefs ();
//puts ("");
}
int
function_parms (function_t *f, byte *parm_size)
{
int count, i;
if (f->def->type->num_parms >= 0)
count = f->def->type->num_parms;
else
count = -f->def->type->num_parms - 1;
for (i = 0; i < count; i++)
parm_size[i] = type_size (f->def->type->parm_types[i]);
return f->def->type->num_parms;
}