quakeforge/include/QF/mathlib.h
Bill Currie f7efcde7ab [vulkan] Clean up and document some of the bsp code
Getting close to understanding (again) how it all works. I only just
barely understood when I got vulkan's renderer running, but I really
need to understand for when I modify things for shadows. The main thing
hurdle was tinst, but that was dealt with in the previous commit, and
now it's just sorting out the mess of elechains and elementss.
2021-07-13 22:59:51 +09:00

227 lines
5.7 KiB
C

/*
mathlib.h
Vector math library
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifndef __QF_mathlib_h
#define __QF_mathlib_h
/** \defgroup mathlib Vector and matrix functions
\ingroup utils
*/
///@{
#include <math.h>
#include "QF/qtypes.h"
#ifndef max
# define max(a,b) ((a) > (b) ? (a) : (b))
#endif
#ifndef min
# define min(a,b) ((a) < (b) ? (a) : (b))
#endif
#ifndef bound
# define bound(a,b,c) (max(a, min(b, c)))
#endif
#ifndef M_PI
# define M_PI 3.14159265358979323846 // matches value in gcc v2 math.h
#endif
extern int nanmask;
#define EQUAL_EPSILON 0.001
#define RINT(x) (floor ((x) + 0.5))
#define IS_NAN(x) (((*(int *) (char *) &x) & nanmask) == nanmask)
#define Blend(a,b,blend) ((1 - (blend)) * (a) + (blend) * (b))
#include "QF/math/vector.h"
#include "QF/math/quaternion.h"
#include "QF/math/dual.h"
#include "QF/math/matrix3.h"
#include "QF/math/matrix4.h"
#include "QF/math/half.h"
#define qfrandom(MAX) ((float) MAX * (rand() * (1.0 / (RAND_MAX + 1.0))))
// up / down
#define PITCH 0
// left / right
#define YAW 1
// fall over
#define ROLL 2
int Q_log2(int val) __attribute__((const));
void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3]);
void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4]);
void FloorDivMod (double numer, double denom, int *quotient, int *rem);
fixed16_t Invert24To16(fixed16_t val) __attribute__((const));
fixed16_t Mul16_30(fixed16_t multiplier, fixed16_t multiplicand);
int GreatestCommonDivisor (int i1, int i2) __attribute__((const));
/** Convert quake angles to basis vectors.
The basis vectors form a left handed system (although the world is
right handed). When all angles are 0, \a forward points along the world
X axis, \a right along the <em>negative</em> Y axis, and \a up along
the Z axis.
Rotation is done by:
-# Rotating YAW degrees counterclockwise around the local Z axis
-# Rotating PITCH degrees clockwise around the new local negative Y axis
(or counterclockwise around the new local Y axis).
-# Rotating ROLL degrees counterclockwise around the local X axis
Thus when used for the player from the first person perspective,
positive YAW turns to the left, positive PITCH looks down, and positive
ROLL leans to the right.
\f[
YAW=\begin{array}{ccc}
c_{y} & s_{y} & 0\\
-s_{y} & c_{y} & 0\\
0 & 0 & 1
\end{array}
\f]
\f[
PITCH=\begin{array}{ccc}
c_{p} & 0 & -s_{p}\\
0 & 1 & 0\\
s_{p} & 0 & c_{p}
\end{array}
\f]
\f[
ROLL=\begin{array}{ccc}
1 & 0 & 0\\
0 & c_{r} & -s_{r}\\
0 & s_{r} & c_{r}
\end{array}
\f]
\f[
ROLL\,(PITCH\,YAW)=\begin{array}{c}
forward\\
-right\\
up
\end{array}
\f]
\param angles The rotation angles.
\param forward The vector pointing forward.
\param right The vector pointing to the right.
\param up The vector pointing up.
*/
void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right,
vec3_t up);
void AngleQuat (const vec3_t angles, quat_t q);
void VectorVectors (const vec3_t forward, vec3_t right, vec3_t up);
int BoxOnPlaneSide (const vec3_t emins, const vec3_t emaxs,
struct plane_s *plane) __attribute__((pure));
float anglemod (float a) __attribute__((const));
void RotatePointAroundVector (vec3_t dst, const vec3_t axis,
const vec3_t point, float degrees);
#define BOX_ON_PLANE_SIDE(emins, emaxs, p) \
(((p)->type < 3)? \
( \
((p)->dist <= (emins)[(p)->type])? \
1 \
: \
( \
((p)->dist >= (emaxs)[(p)->type])? \
2 \
: \
3 \
) \
) \
: \
BoxOnPlaneSide( (emins), (emaxs), (p)))
#define PlaneDist(point,plane) \
((plane)->type < 3 ? (point)[(plane)->type] \
: DotProduct((point), (plane)->normal))
#define PlaneDiff(point,plane) \
(PlaneDist (point, plane) - (plane)->dist)
#define PlaneFlip(sp, dp) \
do { \
(dp)->dist = -(sp)->dist; \
VectorNegate ((sp)->normal, (dp)->normal); \
} while (0)
extern plane_t * const frustum;
GNU89INLINE inline qboolean R_CullBox (const vec3_t mins, const vec3_t maxs) __attribute__((pure));
GNU89INLINE inline qboolean R_CullSphere (const vec3_t origin, const float radius);
#ifndef IMPLEMENT_R_Cull
GNU89INLINE inline
#else
VISIBLE
#endif
qboolean
R_CullBox (const vec3_t mins, const vec3_t maxs)
{
int i;
for (i=0 ; i < 4 ; i++) {
if (BOX_ON_PLANE_SIDE (mins, maxs, &frustum[i]) == 2) {
return true;
}
}
return false;
}
#ifndef IMPLEMENT_R_Cull
GNU89INLINE inline
#else
VISIBLE
#endif
qboolean
R_CullSphere (const vec3_t origin, const float radius)
{
int i;
float r;
for (i = 0; i < 4; i++)
{
r = DotProduct (origin, frustum[i].normal) - frustum[i].dist;
if (r <= -radius)
return true;
}
return false;
}
sphere_t SmallestEnclosingBall (const vec3_t points[], int num_points);
int CircumSphere (const vec3_t points[], int num_points, sphere_t *sphere);
void BarycentricCoords (const vec_t **points, int num_points, const vec3_t p,
vec_t *lambda);
///@}
#endif//__QF_mathlib_h