quakeforge/libs/util/zone.c
Bill Currie 520371a3aa [zone] Fix bad suggested mem calculation
Because the calculation didn't take the hunk header size (which is not
included in the hunk size) into account, the conversion to MB was one
short and thus the rounding up to the next 8 MB boundary was giving the
current total hunk size (ie, the already given size). Most confusing to
a user ("But I already asked for 128MB!").
2022-06-06 14:05:52 +09:00

1388 lines
33 KiB
C

/*
zone.c
(description)
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdarg.h>
#include <stdlib.h>
#include <ctype.h>
#include "QF/cmd.h"
#include "QF/cvar.h"
#include "QF/mathlib.h"
#include "QF/qargs.h"
#include "QF/sys.h"
#include "QF/va.h"
#include "QF/zone.h"
#include "compat.h"
static void Cache_FreeLow (memhunk_t *hunk, size_t new_low_hunk);
static void Cache_FreeHigh (memhunk_t *hunk, size_t new_high_hunk);
static void Cache_Profile_r (memhunk_t *hunk);
static qboolean Cache_FreeLRU (memhunk_t *hunk);
#define ZONEID 0x1d4a11
#define HUNK_SENTINAL 0x1df001ed
#define MINFRAGMENT 64
#define HUNK_ALIGN 64
/*
ZONE MEMORY ALLOCATION
There is never any space between memblocks, and there will never be two
contiguous free memblocks.
The rover can be left pointing at a non-empty block
The zone calls are pretty much used only for small strings and structures,
all big things are allocated on the hunk.
*/
typedef struct memblock_s {
size_t block_size; // including the header and possibly tiny fragments
struct memblock_s *next;
struct memblock_s *prev;
size_t size; // requested size
byte pad[64 - 3 * 4 - 4 * sizeof (size_t)];
int tag; // a tag of 0 is a free block
int id; // should be ZONEID
int retain; // reference counter (optional usage)
} __attribute__((aligned (64))) memblock_t;
struct memzone_s {
size_t size; // total bytes malloced, including header
size_t used; // ammount used, including header
size_t offset;
size_t ele_size;
void (*error) (void *, const char *);
void *data;
memblock_t *rover;
memblock_t blocklist; // start / end cap for linked list
} __attribute__((aligned (64)));
static size_t
z_block_size (memblock_t *block)
{
return block->block_size - sizeof (memblock_t) - 4;
}
static int
z_offset (memzone_t *zone, memblock_t *block)
{
int offset = ((byte *) (block + 1) - (byte *) zone);
return offset / zone->ele_size + zone->offset;
}
static void
z_error (memzone_t *zone, const char *msg)
{
if (zone->error)
zone->error (zone->data, msg);
Sys_Error ("%s", msg);
}
VISIBLE void
Z_ClearZone (memzone_t *zone, size_t size, size_t zone_offset, size_t ele_size)
{
memblock_t *block
= __builtin_choose_expr (__builtin_offsetof (memblock_t, retain) == 60,
0, (void) 0);
// set the entire zone to one free block
block = (memblock_t *) (zone + 1);
zone->blocklist.next = block;
zone->blocklist.prev = block;
zone->blocklist.tag = 1; // in use block
zone->blocklist.id = 0;
zone->blocklist.block_size = 0;
zone->blocklist.size = 0;
zone->offset = zone_offset;
zone->ele_size = ele_size;
zone->rover = block;
zone->size = size;
zone->used = sizeof (memzone_t);
zone->error = 0;
zone->data = 0;
block->prev = block->next = &zone->blocklist;
block->tag = 0; // free block
block->id = ZONEID;
//block->id2 = ZONEID;
block->block_size = size - sizeof (memzone_t);
block->size = 0;
}
VISIBLE void
Z_Free (memzone_t *zone, void *ptr)
{
memblock_t *block, *other;
if (!ptr) {
if (zone->error)
zone->error (zone->data, "Z_Free: NULL pointer");
Sys_Error ("Z_Free: NULL pointer");
}
block = (memblock_t *) ((byte *) ptr - sizeof (memblock_t));
if (((byte *) block < (byte *) zone)
|| (((byte *) block) >= (byte *) zone + zone->size)) {
const char *msg;
msg = nva ("Z_Free: freed a pointer outside of the zone: %x",
z_offset (zone, block));
if (zone->error)
zone->error (zone->data, msg);
Sys_Error ("%s", msg);
}
if (block->id != ZONEID/* || block->id2 != ZONEID*/) {
const char *msg;
msg = nva ("bad pointer %x", z_offset (zone, block));
Sys_Printf ("%s\n", msg);
Z_Print (zone);
fflush (stdout);
if (zone->error)
zone->error (zone->data, msg);
Sys_Error ("Z_Free: freed a pointer without ZONEID");
}
if (block->tag == 0) {
if (zone->error)
zone->error (zone->data, "Z_Free: freed a freed pointer");
Sys_Error ("Z_Free: freed a freed pointer");
}
if (block->retain) {
const char *msg = nva ("Z_Free: freed a retained pointer: %d",
block->retain);
if (zone->error)
zone->error (zone->data, msg);
Sys_Error ("%s", msg);
}
block->tag = 0; // mark as free
block->size = 0;
zone->used -= block->block_size;
other = block->prev;
if (!other->tag) {
// merge with previous free block
other->block_size += block->block_size;
other->next = block->next;
other->next->prev = other;
if (block == zone->rover)
zone->rover = other;
block = other;
}
other = block->next;
if (!other->tag) {
// merge the next free block onto the end
block->block_size += other->block_size;
block->next = other->next;
block->next->prev = block;
if (other == zone->rover)
zone->rover = block;
}
}
VISIBLE void *
Z_Malloc (memzone_t *zone, size_t size)
{
void *buf;
buf = Z_TagMalloc (zone, size, 1);
if (!buf) {
const char *msg;
msg = nva ("Z_Malloc: failed on allocation of %zd bytes", size);
if (zone->error)
zone->error (zone->data, msg);
Sys_Error ("%s", msg);
}
memset (buf, 0, size);
return buf;
}
void *
Z_TagMalloc (memzone_t *zone, size_t size, int tag)
{
int extra;
int requested_size = size;
memblock_t *start, *rover, *new, *base;
if (developer & SYS_zone)
Z_CheckHeap (zone); // DEBUG
if (!tag) {
if (zone->error)
zone->error (zone->data, "Z_TagMalloc: tried to use a 0 tag");
Sys_Error ("Z_TagMalloc: tried to use a 0 tag");
}
// scan through the block list looking for the first free block
// of sufficient size
size += sizeof (memblock_t); // account for size of block header
size += 4; // space for memory trash tester
size = (size + 63) & ~63; // align to 64-byte boundary
base = rover = zone->rover;
start = base->prev;
do {
if (rover == start) // scaned all the way around the list
return NULL;
if (rover->tag)
base = rover = rover->next;
else
rover = rover->next;
} while (base->tag || base->block_size < size);
// found a block big enough
extra = base->block_size - size;
if (extra > MINFRAGMENT) {
// there will be a free fragment after the allocated block
new = (memblock_t *) ((byte *) base + size);
new->block_size = extra;
new->tag = 0; // free block
new->prev = base;
new->id = ZONEID;
//new->id2 = ZONEID;
new->next = base->next;
new->next->prev = new;
base->next = new;
base->block_size = size;
}
base->retain = 0; // use is optional, but must be 0 to free
base->tag = tag; // no longer a free block
base->size = requested_size;
zone->rover = base->next; // next allocation will start looking here
base->id = ZONEID;
//base->id2 = ZONEID;
zone->used += base->block_size;
// marker for memory trash testing
*(int *) ((byte *) base + base->block_size - 4) = ZONEID;
return (void *) (base + 1);
}
VISIBLE void *
Z_Realloc (memzone_t *zone, void *ptr, size_t size)
{
size_t old_size;
memblock_t *block;
void *old_ptr;
if (!ptr)
return Z_Malloc (zone, size);
if (developer & SYS_zone)
Z_CheckHeap (zone); // DEBUG
block = (memblock_t *) ((byte *) ptr - sizeof (memblock_t));
if (block->id != ZONEID/* || block->id2 != ZONEID*/) {
if (zone->error)
zone->error (zone->data,
"Z_Realloc: realloced a pointer without ZONEID");
Sys_Error ("Z_Realloc: realloced a pointer without ZONEID");
}
if (block->tag == 0) {
if (zone->error)
zone->error (zone->data, "Z_Realloc: realloced a freed pointer");
Sys_Error ("Z_Realloc: realloced a freed pointer");
}
old_size = block->block_size;
old_size -= sizeof (memblock_t); // account for size of block header
old_size -= 4; // space for memory trash tester
old_ptr = ptr;
Z_Free (zone, ptr);
ptr = Z_TagMalloc (zone, size, 1);
if (!ptr) {
const char *msg;
msg = nva ("Z_Realloc: failed on allocation of %zd bytes", size);
if (zone->error)
zone->error (zone->data, msg);
Sys_Error ("%s", msg);
}
if (ptr != old_ptr)
memmove (ptr, old_ptr, min (old_size, size));
if (old_size < size)
memset ((byte *)ptr + old_size, 0, size - old_size);
return ptr;
}
void
Z_Print (memzone_t *zone)
{
memblock_t *block;
Sys_Printf ("zone size: %zd location: %p used: %zd\n",
zone->size, zone, zone->used);
for (block = zone->blocklist.next ; ; block = block->next) {
Sys_Printf ("block:%p size:%8zd tag:%5x ret: %5d ofs:%x\n",
block, z_block_size (block),
block->tag, block->retain, z_offset (zone, block));
if (block->next == &zone->blocklist)
break; // all blocks have been hit
if (block->id != ZONEID/* || block->id2 != ZONEID*/)
Sys_Printf ("ERROR: block ids incorrect\n");
if ((byte *) block + block->block_size != (byte *) block->next)
Sys_Printf ("ERROR: block size does not touch the next block\n");
if (block->next->prev != block)
Sys_Printf ("ERROR: next block doesn't have proper back link\n");
if (!block->tag && !block->next->tag)
Sys_Printf ("ERROR: two consecutive free blocks\n");
int id = *(int *) ((byte *) block + block->block_size - 4);
if (block->tag && (id != ZONEID))
Sys_Printf ("ERROR: memory trashed in block %x != %x\n",
id, ZONEID);
fflush (stdout);
}
}
void
Z_CheckHeap (memzone_t *zone)
{
memblock_t *block;
for (block = zone->blocklist.next ; ; block = block->next) {
if (block->next == &zone->blocklist)
break; // all blocks have been hit
if ((byte *) block + block->block_size != (byte *) block->next)
z_error (zone,
"Z_CheckHeap: block size does not touch the next block");
if (block->next->prev != block)
z_error (zone,
"Z_CheckHeap: next block doesn't have proper back link");
if (!block->tag && !block->next->tag)
z_error (zone, "Z_CheckHeap: two consecutive free blocks");
if (block->id != ZONEID/* || block->id2 != ZONEID*/)
z_error (zone, "ERROR: block ids incorrect");
if ((byte *) block + block->block_size != (byte *) block->next)
z_error (zone, "ERROR: block size does not touch the next block");
if (block->next->prev != block)
z_error (zone, "ERROR: next block doesn't have proper back link");
if (!block->tag && !block->next->tag)
z_error (zone, "ERROR: two consecutive free blocks");
if (block->tag
&& (*(int *) ((byte *) block + block->block_size - 4) != ZONEID))
z_error (zone, "ERROR: memory trashed in block");
}
}
VISIBLE void
Z_SetError (memzone_t *zone, void (*err) (void *, const char *), void *data)
{
zone->error = err;
zone->data = data;
}
VISIBLE void
Z_CheckPointer (const memzone_t *zone, const void *ptr, size_t size)
{
const memblock_t *block;
const char *block_mem;
const char *check = (char *) ptr;
for (block = zone->blocklist.next ; ; block = block->next) {
if (block->next == &zone->blocklist)
break; // all blocks have been hit
if (check < (const char *) block
|| check >= (const char *) block + block->block_size)
continue;
// a block that overlaps with the memory region has been found
if (!block->tag)
zone->error (zone->data, "invalid access to unallocated memory");
block_mem = (char *) &block[1];
if (check < block_mem || check + size > block_mem + block->size)
zone->error (zone->data, "invalid access to allocated memory");
return; // access ok
}
}
VISIBLE int
Z_IncRetainCount (memzone_t *zone, void *ptr)
{
memblock_t *block = (memblock_t *) ((byte *) ptr - sizeof (memblock_t));
if (!++block->retain) {
z_error (zone, "inc retain count wrapped to 0");
}
return block->retain;
}
VISIBLE int
Z_DecRetainCount (memzone_t *zone, void *ptr)
{
memblock_t *block = (memblock_t *) ((byte *) ptr - sizeof (memblock_t));
if (--block->retain == -1) {
z_error (zone, "dec retain count wrapped past 0");
}
return block->retain;
}
VISIBLE int
Z_GetRetainCount (memzone_t *zone, void *ptr)
{
memblock_t *block = (memblock_t *) ((byte *) ptr - sizeof (memblock_t));
return block->retain;
}
VISIBLE int
Z_GetTag (memzone_t *zone, void *ptr)
{
memblock_t *block = (memblock_t *) ((byte *) ptr - sizeof (memblock_t));
return block->tag;
}
VISIBLE void
Z_SetTag (memzone_t *zone, void *ptr, int tag)
{
if (!tag) {
z_error (zone, "Attept to set tag to 0");
}
memblock_t *block = (memblock_t *) ((byte *) ptr - sizeof (memblock_t));
block->tag = tag;
}
VISIBLE void
Z_MemInfo (const memzone_t *zone, size_t *used, size_t *size)
{
*used = zone->used;
*size = zone->size;
}
//============================================================================
typedef struct cache_system_s cache_system_t;
struct cache_system_s {
uint32_t prev;
uint32_t next;
uint32_t lru_prev;
uint32_t lru_next;
struct memhunk_s *hunk;
size_t size; // including this header
cache_user_t *user;
char name[16];
int readlock;
} __attribute__((aligned (64)));
typedef struct {
int sentinal1;
int sentinal2;
size_t size; // including sizeof(hunkblk_t), -1 = not allocated
char name[16];
} __attribute__((aligned (64))) hunkblk_t;
struct memhunk_s {
byte *base;
size_t size;
size_t low_used;
size_t high_used;
size_t tempmark;
qboolean tempactive;
cache_system_t cache_head[1];
} __attribute__((aligned (64)));
static cache_system_t *
cs_ptr (memhunk_t *hunk, uint32_t cs_ind)
{
return &hunk->cache_head[cs_ind];
}
static uint32_t
cs_ind (memhunk_t *hunk, cache_system_t *cs_ptr)
{
return cs_ptr - hunk->cache_head;
}
static memhunk_t *global_hunk;
static int
hunk_check (memhunk_t *hunk, hunkblk_t *h, int err)
{
const char *msg = 0;
if (h->sentinal1 != HUNK_SENTINAL || h->sentinal2 != HUNK_SENTINAL) {
msg = "Hunk_Check: trashed sentinel";
}
if (!msg && (h->size < sizeof (hunkblk_t)
|| h->size + (byte *) h > hunk->base + hunk->size)) {
msg = "Hunk_Check: bad size";
}
if (!msg) {
return 1;
}
byte *buf = (byte *) h;
int len = sizeof (*h);
int pos = 0, llen, i;
fflush (stdout);
fprintf (stderr, "\n");
while (pos < len) {
llen = (len - pos < 16 ? len - pos : 16);
fprintf (stderr, "%08x: ", pos);
for (i = 0; i < llen; i++)
fprintf (stderr, "%02x ", buf[pos + i]);
for (i = 0; i < 16 - llen; i++)
fprintf (stderr, " ");
fprintf (stderr, " | ");
for (i = 0; i < llen; i++)
fprintf (stderr, "%c", isprint (buf[pos + i]) ? buf[pos + i] : '.');
for (i = 0; i < 16 - llen; i++)
fprintf (stderr, " ");
fprintf (stderr, "\n");
pos += llen;
}
if (err) {
Sys_Error ("%p: %zd: %s", h, (byte *) h - (byte *) hunk, msg);
}
fprintf (stderr, "%p: %zd: %s", h, (byte *) h - (byte *) hunk, msg);
return 0;
}
/*
Hunk_Check
Run consistancy and sentinal trahing checks
*/
VISIBLE void
Hunk_Check (memhunk_t *hunk)
{
if (!hunk) { hunk = global_hunk; } //FIXME clean up callers
hunkblk_t *h;
byte *hunk_end = hunk->base + hunk->low_used;
for (h = (hunkblk_t *) hunk->base; (byte *) h < hunk_end; ) {
hunk_check (hunk, h, 1);
h = (hunkblk_t *) ((byte *) h + h->size);
}
}
/*
Hunk_Print
If "all" is specified, every single allocation is printed.
Otherwise, allocations with the same name will be totaled up before
printing.
*/
VISIBLE void
Hunk_Print (memhunk_t *hunk, qboolean all)
{
if (!hunk) { hunk = global_hunk; } //FIXME clean up callers
hunkblk_t *h, *next, *endlow, *starthigh, *endhigh;
int count, sum, totalblocks;
count = 0;
sum = 0;
totalblocks = 0;
h = (hunkblk_t *) hunk->base;
endlow = (hunkblk_t *) (hunk->base + hunk->low_used);
starthigh = (hunkblk_t *) (hunk->base + hunk->size - hunk->high_used);
endhigh = (hunkblk_t *) (hunk->base + hunk->size);
Sys_Printf (" :%8zd total hunk size\n", hunk->size);
Sys_Printf ("-------------------------\n");
while (1) {
// skip to the high hunk if done with low hunk
if (h == endlow) {
Sys_Printf ("-------------------------\n");
Sys_Printf (" :%8zd REMAINING\n",
hunk->size - hunk->low_used - hunk->high_used);
Sys_Printf ("-------------------------\n");
h = starthigh;
}
// if totally done, break
if (h == endhigh)
break;
// run consistancy checks
if (!hunk_check (hunk, h, 0)) {
break;
}
next = (hunkblk_t *) ((byte *) h + h->size);
count++;
totalblocks++;
sum += h->size;
// print the single block
if (all) {
const int sz = sizeof (h->name);
Sys_Printf ("%8p :%8zd %*.*s\n", h, h->size, sz, sz,
h->name[0] ? h->name : "unknown");
}
// print the total
if (next == endlow || next == endhigh ||
strncmp (h->name, next->name, sizeof (h->name))) {
if (!all) {
const int sz = sizeof (h->name);
Sys_Printf (" :%8i %*.*s (TOTAL)\n",
sum, sz, sz, h->name[0] ? h->name : "unknown");
}
count = 0;
sum = 0;
}
h = next;
}
Sys_Printf ("-------------------------\n");
Sys_Printf ("%8i total blocks\n", totalblocks);
}
static void
Hunk_FreeToHighMark (memhunk_t *hunk, size_t mark)
{
if (!hunk) { hunk = global_hunk; } //FIXME clean up callers
if (hunk->tempactive) {
hunk->tempactive = false;
Hunk_FreeToHighMark (hunk, hunk->tempmark);
}
if (mark == hunk->high_used)
return;
if (mark > hunk->high_used)
Sys_Error ("Hunk_FreeToHighMark: bad mark %zd", mark);
memset (hunk->base + hunk->size - hunk->high_used, 0,
hunk->high_used - mark);
hunk->high_used = mark;
}
static int
Hunk_HighMark (memhunk_t *hunk)
{
if (!hunk) { hunk = global_hunk; } //FIXME clean up callers
if (hunk->tempactive) {
hunk->tempactive = false;
Hunk_FreeToHighMark (hunk, hunk->tempmark);
}
return hunk->high_used;
}
VISIBLE void *
Hunk_RawAlloc (memhunk_t *hunk, size_t size)
{
hunkblk_t *h;
#ifdef PARANOID
Hunk_Check (hunk);
#endif
size = sizeof (hunkblk_t) + ((size + HUNK_ALIGN - 1) & ~(HUNK_ALIGN - 1));
if (hunk->size - hunk->low_used - hunk->high_used < size) {
Hunk_HighMark (hunk); // force free of temp hunk
}
if (hunk->size - hunk->low_used - hunk->high_used < size) {
int mem = (hunk->size + sizeof (memhunk_t)) / (1024 * 1024);
mem += 8;
mem &= ~7;
Hunk_Print (hunk, 1);
Cache_Profile_r (hunk);
Sys_Error
("Not enough RAM allocated. Try starting using \"-mem %d\" on "
"the %s command line. (%zd - %zd - %zd < %zd)", mem,
PACKAGE_NAME, hunk->size, hunk->low_used, hunk->high_used, size);
}
h = (hunkblk_t *) (hunk->base + hunk->low_used);
hunk->low_used += size;
Cache_FreeLow (hunk, hunk->low_used);
h->size = size;
h->sentinal1 = HUNK_SENTINAL;
h->sentinal2 = HUNK_SENTINAL;
h->name[0] = 0;
return (void *) (h + 1);
}
VISIBLE void *
Hunk_RawAllocName (memhunk_t *hunk, size_t size, const char *name)
{
void *mem = Hunk_RawAlloc (hunk, size);
hunkblk_t *h = ((hunkblk_t *) mem) - 1;
memccpy (h->name, name, 0, sizeof (h->name));
return mem;
}
VISIBLE void *
Hunk_AllocName (memhunk_t *hunk, size_t size, const char *name)
{
if (!hunk) { hunk = global_hunk; } //FIXME clean up callers
void *mem = Hunk_RawAllocName (hunk, size, name);
memset (mem, 0, size);
return mem;
}
VISIBLE void *
Hunk_Alloc (memhunk_t *hunk, size_t size)
{
if (!hunk) { hunk = global_hunk; } //FIXME clean up callers
void *mem = Hunk_RawAlloc (hunk, size);
memset (mem, 0, size);
return mem;
}
VISIBLE size_t
Hunk_LowMark (memhunk_t *hunk)
{
if (!hunk) { hunk = global_hunk; } //FIXME clean up callers
return hunk->low_used;
}
VISIBLE void
Hunk_RawFreeToLowMark (memhunk_t *hunk, size_t mark)
{
if (mark == hunk->low_used)
return;
if (mark > hunk->low_used)
Sys_Error ("Hunk_FreeToLowMark: bad mark %zd", mark);
hunk->low_used = mark;
}
VISIBLE void
Hunk_FreeToLowMark (memhunk_t *hunk, size_t mark)
{
if (!hunk) { hunk = global_hunk; } //FIXME clean up callers
if (mark == hunk->low_used)
return;
if (mark > hunk->low_used)
Sys_Error ("Hunk_FreeToLowMark: bad mark %zd", mark);
memset (hunk->base + mark, 0, hunk->low_used - mark);
hunk->low_used = mark;
}
static void *
Hunk_HighAlloc (memhunk_t *hunk, size_t size)
{
hunkblk_t *h;
if (hunk->tempactive) {
Hunk_FreeToHighMark (hunk, hunk->tempmark);
hunk->tempactive = false;
}
#ifdef PARANOID
Hunk_Check (hunk);
#endif
size = sizeof (hunkblk_t) + ((size + HUNK_ALIGN - 1) & ~(HUNK_ALIGN - 1));
if (hunk->size - hunk->low_used - hunk->high_used < size) {
Sys_Printf ("Hunk_HighAlloc: failed on %zd bytes\n", size);
return NULL;
}
hunk->high_used += size;
Cache_FreeHigh (hunk, hunk->high_used);
h = (void *) (hunk->base + hunk->size - hunk->high_used);
h->sentinal1 = HUNK_SENTINAL;
h->sentinal2 = HUNK_SENTINAL;
h->size = size;
h->name[0] = 0;
return h + 1;
}
/*
Hunk_TempAlloc
Return space from the top of the hunk
*/
VISIBLE void *
Hunk_TempAlloc (memhunk_t *hunk, size_t size)
{
if (!hunk) { hunk = global_hunk; } //FIXME clean up callers
void *buf;
size = (size + HUNK_ALIGN - 1) & ~(HUNK_ALIGN - 1);
if (hunk->tempactive) {
size_t temp_free = hunk->high_used - hunk->tempmark;
if (temp_free >= size + (int) sizeof (hunkblk_t)) {
byte *temp_block = hunk->base + hunk->size - hunk->high_used;
return (hunkblk_t *) temp_block + 1;
}
Hunk_FreeToHighMark (hunk, hunk->tempmark);
hunk->tempactive = false;
}
hunk->tempmark = Hunk_HighMark (hunk);
buf = Hunk_HighAlloc (hunk, size);
hunk->tempactive = true;
return buf;
}
VISIBLE int
Hunk_PointerIsValid (memhunk_t *hunk, void *ptr)
{
if (!hunk) { hunk = global_hunk; } //FIXME clean up callers
size_t offset = (byte *) ptr - hunk->base;
if (offset >= hunk->size) {
return 0;
}
if (offset < hunk->low_used) {
// the pointer is somewhere in the lower space of the hunk
// FIXME better checking?
return 1;
}
if (offset >= hunk->size - hunk->high_used + sizeof (hunkblk_t)) {
// the pointer is somewhere in the upper space of the hunk
// FIXME better checking?
return 1;
}
// the pointer is somewhere in between the two marks, so it has probably
// been freed
return 0;
}
/* CACHE MEMORY */
static inline void
Cache_UnlinkLRU (cache_system_t * cs)
{
memhunk_t *hunk = cs->hunk;
cs_ptr (hunk, cs->lru_next)->lru_prev = cs->lru_prev;
cs_ptr (hunk, cs->lru_prev)->lru_next = cs->lru_next;
cs->lru_prev = cs->lru_next = 0;
}
static void
Cache_MakeLRU (cache_system_t * cs)
{
memhunk_t *hunk = cs->hunk;
__auto_type nx = cs_ptr (hunk, hunk->cache_head[0].lru_next);
nx->lru_prev = cs_ind (hunk, cs);
cs->lru_next = cs_ind (hunk, nx);
cs->lru_prev = 0;
hunk->cache_head[0].lru_next = cs_ind (hunk, cs);
}
static void
link_cache_system (cache_system_t *new, cache_system_t *cs)
{
memhunk_t *hunk = cs->hunk;
new->next = cs_ind (hunk, cs);
new->prev = cs->prev;
cs_ptr (hunk, cs->prev)->next = cs_ind (hunk, new);
cs->prev = cs_ind (hunk, new);
}
/*
Cache_TryAlloc
Looks for a free block of memory between the high and low hunk marks
Size should already include the header and padding
*/
static cache_system_t *
Cache_TryAlloc (memhunk_t *hunk, size_t size,
size_t low_space, size_t high_space)
{
cache_system_t *cs, *new;
low_space = max (low_space, hunk->low_used);
high_space = max (high_space, hunk->high_used);
if (hunk->cache_head[0].prev == 0) {
// The cache is completely empty, so just check for space
if (hunk->size - high_space < low_space + size) {
return 0;
}
// cache memory comes from the free region of the hunk. Should either
// end of the hunk need to grow, interfering cache blocks will be
// either moved or freed if there is nowhere to move the block.
new = (cache_system_t *) (hunk->base + hunk->low_used);
new->size = size;
new->hunk = hunk;
hunk->cache_head[0].prev = cs_ind (hunk, new);
hunk->cache_head[0].next = cs_ind (hunk, new);
new->prev = new->next = 0;
new->readlock = 0;
new->name[0] = 0;
Cache_MakeLRU (new);
return new;
}
new = (cache_system_t *) (hunk->base + low_space);
uint32_t csi = hunk->cache_head[0].next;
do {
cs = cs_ptr (hunk, csi);
if ((byte *) cs >= (byte *) new + size) {
new->size = size;
new->hunk = hunk;
link_cache_system (new, cs);
new->readlock = 0;
new->name[0] = 0;
Cache_MakeLRU (new);
return new;
}
// try next block. If it is a hole, then the resulting cs will be
// greater than new (though possibly not sufficiently so), but if
// it's not a hole, then they'll be the same and the difference in
// the test above will be 0
new = (cache_system_t *) ((byte *) cs + cs->size);
csi = cs->next;
} while (csi);
// came to the end of the cache. try to allocate from between the cache
// and the high hunk
if ((byte *) new < hunk->base + low_space) {
new = (cache_system_t *) (hunk->base + low_space);
}
if (hunk->base + hunk->size - high_space >= (byte *) new + size) {
new->size = size;
new->hunk = hunk;
link_cache_system (new, hunk->cache_head);
new->readlock = 0;
new->name[0] = 0;
Cache_MakeLRU (new);
return new;
}
return 0; // couldn't allocate
}
static void
Cache_Move (cache_system_t *c, size_t new_low_hunk, size_t new_high_hunk)
{
memhunk_t *hunk = c->hunk;
cache_system_t *new;
new = Cache_TryAlloc (hunk, c->size, new_low_hunk, new_high_hunk);
if (new) {
Sys_MaskPrintf (SYS_cache, "cache_move ok\n");
memcpy (new + 1, c + 1, c->size - sizeof (cache_system_t));
new->user = c->user;
memccpy (new->name, c->name, 0, sizeof (new->name));
Cache_Free (c->user);
new->user->data = (void *) (new + 1);
} else {
Sys_MaskPrintf (SYS_cache, "cache_move failed\n");
Cache_Free (c->user); // tough luck...
}
}
/*
Cache_FreeLow
Throw things out until the hunk can be expanded to the given point
*/
static void
Cache_FreeLow (memhunk_t *hunk, size_t new_low_hunk)
{
cache_system_t *c;
uint32_t ci;
// if next is 0, then there is nothing in the cache
while ((ci = hunk->cache_head[0].next)) {
c = cs_ptr (hunk, ci);
if ((byte *) c >= hunk->base + new_low_hunk) {
// there is space to grow the hunk
return;
}
// reclaim the space (the block will be moved or freed)
Cache_Move (c, new_low_hunk, 0);
}
}
static void
Cache_FreeHigh (memhunk_t *hunk, size_t new_high_hunk)
{
cache_system_t *c;
uint32_t ci;
while ((ci = hunk->cache_head[0].prev)) {
c = cs_ptr (hunk, ci);
if ((byte *) c + c->size <= hunk->base + hunk->size - new_high_hunk) {
// there is space to grow the hunk
return;
}
// reclaim the space (the block will be moved or freed)
Cache_Move (c, 0, new_high_hunk);
}
}
static qboolean
Cache_FreeLRU (memhunk_t *hunk)
{
cache_system_t *cs;
for (cs = cs_ptr (hunk, hunk->cache_head[0].lru_prev);
cs != hunk->cache_head && cs->readlock;
cs = cs_ptr (hunk, cs->lru_prev)) {
}
if (cs == hunk->cache_head)
return 0;
Cache_Free (cs->user);
return 1;
}
static void
Cache_Profile_r (memhunk_t *hunk)
{
unsigned int i;
unsigned int items[31] = {0}, sizes[31] = {0};
int count = 0, total = 0;
cache_system_t *cs;
for (uint32_t ind = hunk->cache_head[0].next; ind; ind = cs->next) {
cs = cs_ptr (hunk, ind);
for (i = 0; (cs->size >> (i + 1)) && i < 30; i++) {
}
items[i]++;
sizes[i] += cs->size;
total += cs->size;
count++;
ind = cs->next;
}
Sys_Printf ("Cache Profile:\n");
Sys_Printf ("%8s %8s %8s %8s %8s\n",
"count", "min", "max", "average", "percent");
for (i = 0; i < 31; i++) {
if (!items[i])
continue;
Sys_Printf ("%8d %8d %8d %8d %7d%%\n",
items[i], 1 << i, (1 << (i + 1)) - 1,
sizes[i] / items[i],
(sizes[i] * 100) / total);
}
Sys_Printf ("Total allocations: %d in %d allocations, average of"
" %d per allocation\n", total, count,
count ? total / count : -1);
}
static void
Cache_Profile (void)
{
Cache_Profile_r (global_hunk);
}
static void
Cache_Print_r (memhunk_t *hunk)
{
cache_system_t *cs;
for (uint32_t ind = hunk->cache_head[0].next; ind; ind = cs->next) {
const int sz = sizeof (cs->name);
cs = cs_ptr (hunk, ind);
Sys_Printf ("%8zd : %.*s\n", cs->size, sz, cs->name);
}
}
static void
Cache_Print (void)
{
Cache_Print_r (global_hunk);
}
static void
init_cache (memhunk_t *hunk)
{
hunk->cache_head[0].hunk = hunk;
hunk->cache_head[0].size = 0;
hunk->cache_head[0].next = hunk->cache_head[0].prev = 0;
hunk->cache_head[0].lru_next = hunk->cache_head[0].lru_prev = 0;
hunk->cache_head[0].user = (cache_user_t *) 1; // make it look allocated
hunk->cache_head[0].readlock = 1; // don't try to free or move it
}
static void
Cache_Init (void)
{
Cmd_AddCommand ("cache_flush", Cache_Flush, "Clears the current game "
"cache");
Cmd_AddCommand ("cache_profile", Cache_Profile, "Prints a profile of "
"the current cache");
Cmd_AddCommand ("cache_print", Cache_Print, "Prints out items in the "
"cache");
}
/*
Cache_Flush
Throw everything out, so new data will be demand cached
*/
static void
Cache_Flush_r (memhunk_t *hunk)
{
// cache_head.prev is guaranteed to not be free because it's the bottom
// one and Cache_Free actually properly releases it
while (hunk->cache_head[0].prev) {
__auto_type cs = cs_ptr (hunk, hunk->cache_head[0].prev);
if (!cs->user->data) {
const int sz = sizeof (cs->name);
Sys_Error ("Cache_Flush: user/system out of sync for "
"'%.*s' with %zd size",
sz, cs->name, cs->size);
}
Cache_Free (cs->user); // reclaim the space
}
}
VISIBLE void
Cache_Flush (void)
{
// cache_head.prev is guaranteed to not be free because it's the bottom
Cache_Flush_r (global_hunk);
}
VISIBLE void *
Cache_Check (cache_user_t *c)
{
cache_system_t *cs;
if (!c->data)
return NULL;
cs = ((cache_system_t *) c->data) - 1;
// move to head of LRU
Cache_UnlinkLRU (cs);
Cache_MakeLRU (cs);
return c->data;
}
/*
Cache_Free
Frees the memory and removes it from the LRU list
*/
VISIBLE void
Cache_Free (cache_user_t *c)
{
cache_system_t *cs;
if (!c->data)
Sys_Error ("Cache_Free: not allocated");
cs = ((cache_system_t *) c->data) - 1;
if (cs->readlock)
Sys_Error ("Cache_Free: attempt to free locked block");
const int sz = sizeof (cs->name);
Sys_MaskPrintf (SYS_cache, "Cache_Free: freeing '%.*s' %p\n",
sz, cs->name, cs);
memhunk_t *hunk = cs->hunk;
cs_ptr (hunk, cs->prev)->next = cs->next;
cs_ptr (hunk, cs->next)->prev = cs->prev;
cs->next = cs->prev = 0;
c->data = NULL;
Cache_UnlinkLRU (cs);
}
static void *
Cache_Alloc_r (memhunk_t *hunk, cache_user_t *c, size_t size, const char *name)
{
cache_system_t *cs;
if (c->data)
Sys_Error ("Cache_Alloc_r: already allocated");
if (size <= 0)
Sys_Error ("Cache_Alloc_r: size %zd", size);
size = (size + sizeof (cache_system_t) + HUNK_ALIGN - 1) & ~(HUNK_ALIGN-1);
// find memory for it
while (1) {
cs = Cache_TryAlloc (hunk, size, 0, 0);
if (cs) {
memccpy (cs->name, name, 0, sizeof (cs->name));
c->data = (void *) (cs + 1);
cs->user = c;
break;
}
// free the least recently used cachedat
if (!Cache_FreeLRU (hunk))
Sys_Error ("Cache_Alloc: out of memory");
}
return Cache_Check (c);
}
VISIBLE void *
Cache_Alloc (cache_user_t *c, size_t size, const char *name)
{
return Cache_Alloc_r (global_hunk, c, size, name);
}
static void
Cache_Report_r (memhunk_t *hunk)
{
Sys_Printf ("%4.1f megabyte data cache\n",
(hunk->size - hunk->high_used -
hunk->low_used) / (float) (1024 * 1024));
}
VISIBLE void
Cache_Report (void)
{
if (developer & SYS_cache) {
Cache_Report_r (global_hunk);
}
}
VISIBLE void
Cache_Add (cache_user_t *c, void *object, cache_loader_t loader)
{
if (c->data || c->object || c->loader)
Sys_Error ("Cache_Add: cache item already exists!");
c->object = object;
c->loader = loader;
// c->loader (c, Cache_Alloc); // for debugging
}
VISIBLE void
Cache_Remove (cache_user_t *c)
{
if (!c->object || !c->loader)
Sys_Error ("Cache_Remove: already removed!");
if (Cache_Check (c))
Cache_Free (c);
c->object = 0;
c->loader = 0;
}
VISIBLE void *
Cache_TryGet (cache_user_t *c)
{
void *mem;
mem = Cache_Check (c);
if (!mem) {
c->loader (c->object, Cache_Alloc);
mem = Cache_Check (c);
}
if (mem)
(((cache_system_t *)c->data) - 1)->readlock++;
return mem;
}
VISIBLE void *
Cache_Get (cache_user_t *c)
{
void *mem = Cache_TryGet (c);
if (!mem)
Sys_Error ("Cache_Get: couldn't get cache!");
return mem;
}
VISIBLE void
Cache_Release (cache_user_t *c)
{
int *readlock;
readlock = &(((cache_system_t *)c->data) - 1)->readlock;
if (!*readlock)
Sys_Error ("Cache_Release: already released!");
(*readlock)--;
// if (!*readlock)
// Cache_Free (c); // for debugging
}
VISIBLE int
Cache_ReadLock (cache_user_t *c)
{
return (((cache_system_t *)c->data) - 1)->readlock;
}
//============================================================================
VISIBLE memhunk_t *
Hunk_Init (void *buf, size_t size)
{
memhunk_t *hunk = buf;
hunk->base = (byte *) (hunk + 1);
hunk->size = size - sizeof (memhunk_t);
hunk->low_used = 0;
hunk->high_used = 0;
init_cache (hunk);
return hunk;
}
VISIBLE memhunk_t *
Memory_Init (void *buf, size_t size)
{
global_hunk = Hunk_Init (buf, size);
Cache_Init ();
return global_hunk;
}