quakeforge/tools/qfcc/source/expr.c
Bill Currie 33a3f92503 [qfcc] Move .return handling into statements.c
The means that the actual call expression is not in the statement lint
of the enclosing block expression, but just its result, whether the call
is void or not. This actually simplifies several things, but most
importantly will make Ruamoko calls easier to implement.

The test is because I had some trouble with double-calls, and is how I
found the return-postop issue :P
2022-01-21 13:09:23 +09:00

2916 lines
67 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
expr.c
expression construction and manipulations
Copyright (C) 2001 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2001/06/15
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "QF/alloc.h"
#include "QF/dstring.h"
#include "QF/mathlib.h"
#include "QF/sys.h"
#include "QF/va.h"
#include "tools/qfcc/include/qfcc.h"
#include "tools/qfcc/include/class.h"
#include "tools/qfcc/include/def.h"
#include "tools/qfcc/include/defspace.h"
#include "tools/qfcc/include/diagnostic.h"
#include "tools/qfcc/include/emit.h"
#include "tools/qfcc/include/expr.h"
#include "tools/qfcc/include/function.h"
#include "tools/qfcc/include/idstuff.h"
#include "tools/qfcc/include/method.h"
#include "tools/qfcc/include/options.h"
#include "tools/qfcc/include/reloc.h"
#include "tools/qfcc/include/shared.h"
#include "tools/qfcc/include/strpool.h"
#include "tools/qfcc/include/struct.h"
#include "tools/qfcc/include/symtab.h"
#include "tools/qfcc/include/type.h"
#include "tools/qfcc/include/value.h"
#include "tools/qfcc/source/qc-parse.h"
static expr_t *exprs_freelist;
void
convert_name (expr_t *e)
{
symbol_t *sym;
expr_t *new;
if (e->type != ex_symbol)
return;
sym = e->e.symbol;
if (!strcmp (sym->name, "__PRETTY_FUNCTION__")
&& current_func) {
new = new_string_expr (current_func->name);
goto convert;
}
if (!strcmp (sym->name, "__FUNCTION__")
&& current_func) {
new = new_string_expr (current_func->def->name);
goto convert;
}
if (!strcmp (sym->name, "__LINE__")
&& current_func) {
new = new_int_expr (e->line);
goto convert;
}
if (!strcmp (sym->name, "__INFINITY__")
&& current_func) {
new = new_float_expr (INFINITY);
goto convert;
}
if (!strcmp (sym->name, "__FILE__")
&& current_func) {
new = new_string_expr (GETSTR (e->file));
goto convert;
}
if (!sym->table) {
error (e, "%s undefined", sym->name);
sym->type = type_default;
//FIXME need a def
return;
}
if (sym->sy_type == sy_convert) {
new = sym->s.convert.conv (sym, sym->s.convert.data);
goto convert;
}
if (sym->sy_type == sy_expr) {
new = copy_expr (sym->s.expr);
goto convert;
}
if (sym->sy_type == sy_type)
internal_error (e, "unexpected typedef");
// var, const and func shouldn't need extra handling
return;
convert:
e->type = new->type;
e->e = new->e;
}
expr_t *
convert_vector (expr_t *e)
{
float val[4];
if (e->type != ex_vector)
return e;
if (is_vector(e->e.vector.type)) {
// guaranteed to have three elements
expr_t *x = e->e.vector.list;
expr_t *y = x->next;
expr_t *z = y->next;
x = fold_constants (cast_expr (&type_float, x));
y = fold_constants (cast_expr (&type_float, y));
z = fold_constants (cast_expr (&type_float, z));
if (is_constant (x) && is_constant (y) && is_constant (z)) {
val[0] = expr_float(x);
val[1] = expr_float(y);
val[2] = expr_float(z);
return new_vector_expr (val);
}
// at least one of x, y, z is not constant, so rebuild the
// list incase any of them are new expressions
z->next = 0;
y->next = z;
x->next = y;
e->e.vector.list = x;
return e;
}
if (is_quaternion(e->e.vector.type)) {
// guaranteed to have two or four elements
if (e->e.vector.list->next->next) {
// four vals: x, y, z, w
expr_t *x = e->e.vector.list;
expr_t *y = x->next;
expr_t *z = y->next;
expr_t *w = z->next;
x = fold_constants (cast_expr (&type_float, x));
y = fold_constants (cast_expr (&type_float, y));
z = fold_constants (cast_expr (&type_float, z));
w = fold_constants (cast_expr (&type_float, w));
if (is_constant (x) && is_constant (y) && is_constant (z)
&& is_constant (w)) {
val[0] = expr_float(x);
val[1] = expr_float(y);
val[2] = expr_float(z);
val[3] = expr_float(w);
return new_quaternion_expr (val);
}
// at least one of x, y, z, w is not constant, so rebuild the
// list incase any of them are new expressions
w->next = 0;
z->next = w;
y->next = z;
x->next = y;
e->e.vector.list = x;
return e;
} else {
// v, s
expr_t *v = e->e.vector.list;
expr_t *s = v->next;
v = convert_vector (v);
s = fold_constants (cast_expr (&type_float, s));
if (is_constant (v) && is_constant (s)) {
memcpy (val, expr_vector (v), 3 * sizeof (float));
val[3] = expr_float (s);
return new_quaternion_expr (val);
}
// Either v or s is not constant, so can't convert to a quaternion
// constant.
// Rebuild the list in case v or s is a new expression
// the list will always be v, s
s->next = 0;
v->next = s;
e->e.vector.list = v;
return e;
}
}
internal_error (e, "bogus vector expression");
}
type_t *
get_type (expr_t *e)
{
const type_t *type = 0;
convert_name (e);
switch (e->type) {
case ex_branch:
type = e->e.branch.ret_type;
break;
case ex_labelref:
return &type_void;
case ex_memset:
return e->e.memset.type;
case ex_error:
return 0;
case ex_return:
internal_error (e, "unexpected expression type");
case ex_label:
case ex_compound:
return 0;
case ex_bool:
if (options.code.progsversion == PROG_ID_VERSION)
return &type_float;
return &type_int;
case ex_nil:
if (e->e.nil) {
return e->e.nil;
}
// fall through
case ex_state:
return &type_void;
case ex_block:
if (e->e.block.result)
return get_type (e->e.block.result);
return &type_void;
case ex_expr:
case ex_uexpr:
type = e->e.expr.type;
break;
case ex_def:
type = e->e.def->type;
break;
case ex_symbol:
type = e->e.symbol->type;
break;
case ex_temp:
type = e->e.temp.type;
break;
case ex_value:
type = e->e.value->type;
break;
case ex_vector:
return e->e.vector.type;
case ex_selector:
return &type_SEL;
case ex_alias:
type = e->e.alias.type;
break;
case ex_address:
type = e->e.address.type;
break;
case ex_assign:
return get_type (e->e.assign.dst);
case ex_count:
internal_error (e, "invalid expression");
}
return (type_t *) unalias_type (type);//FIXME cast
}
etype_t
extract_type (expr_t *e)
{
type_t *type = get_type (e);
if (type)
return type->type;
return ev_type_count;
}
expr_t *
type_mismatch (expr_t *e1, expr_t *e2, int op)
{
dstring_t *t1 = dstring_newstr ();
dstring_t *t2 = dstring_newstr ();
print_type_str (t1, get_type (e1));
print_type_str (t2, get_type (e2));
e1 = error (e1, "type mismatch: %s %s %s",
t1->str, get_op_string (op), t2->str);
dstring_delete (t1);
dstring_delete (t2);
return e1;
}
expr_t *
param_mismatch (expr_t *e, int param, const char *fn, type_t *t1, type_t *t2)
{
dstring_t *s1 = dstring_newstr ();
dstring_t *s2 = dstring_newstr ();
print_type_str (s1, t1);
print_type_str (s2, t2);
e = error (e, "type mismatch for parameter %d of %s: expected %s, got %s",
param, fn, s1->str, s2->str);
dstring_delete (s1);
dstring_delete (s2);
return e;
}
expr_t *
cast_error (expr_t *e, type_t *t1, type_t *t2)
{
dstring_t *s1 = dstring_newstr ();
dstring_t *s2 = dstring_newstr ();
print_type_str (s1, t1);
print_type_str (s2, t2);
e = error (e, "cannot cast from %s to %s", s1->str, s2->str);
dstring_delete (s1);
dstring_delete (s2);
return e;
}
expr_t *
test_error (expr_t *e, type_t *t)
{
dstring_t *s = dstring_newstr ();
print_type_str (s, t);
e = error (e, "%s cannot be tested", s->str);
dstring_delete (s);
return e;
}
expr_t *
new_expr (void)
{
expr_t *e;
ALLOC (16384, expr_t, exprs, e);
e->line = pr.source_line;
e->file = pr.source_file;
return e;
}
expr_t *
copy_expr (expr_t *e)
{
expr_t *n;
expr_t *t;
if (!e)
return 0;
switch (e->type) {
case ex_error:
case ex_def:
case ex_symbol:
case ex_nil:
case ex_value:
// nothing to do here
n = new_expr ();
*n = *e;
n->line = pr.source_line;
n->file = pr.source_file;
return n;
case ex_state:
return new_state_expr (copy_expr (e->e.state.frame),
copy_expr (e->e.state.think),
copy_expr (e->e.state.step));
case ex_bool:
n = new_expr ();
*n = *e;
n->line = pr.source_line;
n->file = pr.source_file;
if (e->e.bool.true_list) {
int count = e->e.bool.true_list->size;
size_t size = (size_t)&((ex_list_t *) 0)->e[count];
n->e.bool.true_list = malloc (size);
while (count--)
n->e.bool.true_list->e[count] =
copy_expr (e->e.bool.true_list->e[count]);
}
if (e->e.bool.false_list) {
int count = e->e.bool.false_list->size;
size_t size = (size_t)&((ex_list_t *) 0)->e[count];
n->e.bool.false_list = malloc (size);
while (count--)
n->e.bool.false_list->e[count] =
copy_expr (e->e.bool.false_list->e[count]);
}
n->e.bool.e = copy_expr (e->e.bool.e);
return n;
case ex_label:
/// Create a fresh label
return new_label_expr ();
case ex_labelref:
return new_label_ref (e->e.labelref.label);
case ex_block:
n = new_expr ();
*n = *e;
n->line = pr.source_line;
n->file = pr.source_file;
n->e.block.head = 0;
n->e.block.tail = &n->e.block.head;
n->e.block.result = 0;
for (t = e->e.block.head; t; t = t->next) {
if (t == e->e.block.result) {
n->e.block.result = copy_expr (t);
append_expr (n, n->e.block.result);
} else {
append_expr (n, copy_expr (t));
}
}
if (e->e.block.result && !n->e.block.result)
internal_error (e, "bogus block result?");
break;
case ex_expr:
n = new_expr ();
*n = *e;
n->line = pr.source_line;
n->file = pr.source_file;
n->e.expr.e1 = copy_expr (e->e.expr.e1);
n->e.expr.e2 = copy_expr (e->e.expr.e2);
return n;
case ex_uexpr:
n = new_expr ();
*n = *e;
n->line = pr.source_line;
n->file = pr.source_file;
n->e.expr.e1 = copy_expr (e->e.expr.e1);
return n;
case ex_temp:
n = new_expr ();
*n = *e;
n->line = pr.source_line;
n->file = pr.source_file;
return n;
case ex_vector:
n = new_expr ();
*n = *e;
n->e.vector.type = e->e.vector.type;
n->e.vector.list = copy_expr (e->e.vector.list);
t = e->e.vector.list;
e = n->e.vector.list;
while (t->next) {
e->next = copy_expr (t->next);
e = e->next;
t = t->next;
}
return n;
case ex_selector:
n = new_expr ();
*n = *e;
n->e.selector.sel_ref = copy_expr (e->e.selector.sel_ref);
return n;
case ex_compound:
n = new_expr ();
*n = *e;
for (element_t *i = e->e.compound.head; i; i = i->next) {
append_element (n, new_element (i->expr, i->symbol));
}
return n;
case ex_memset:
n = new_expr ();
*n = *e;
n->e.memset.dst = copy_expr (e->e.memset.dst);
n->e.memset.val = copy_expr (e->e.memset.val);
n->e.memset.count = copy_expr (e->e.memset.count);
return n;
case ex_alias:
n = new_expr ();
*n = *e;
n->e.alias.expr = copy_expr (e->e.alias.expr);
n->e.alias.offset = copy_expr (e->e.alias.offset);
return n;
case ex_address:
n = new_expr ();
*n = *e;
n->e.address.lvalue = copy_expr (e->e.address.lvalue);
n->e.address.offset = copy_expr (e->e.address.offset);
return n;
case ex_assign:
n = new_expr ();
*n = *e;
n->e.assign.dst = copy_expr (e->e.assign.dst);
n->e.assign.src = copy_expr (e->e.assign.src);
return n;
case ex_branch:
n = new_expr ();
*n = *e;
n->e.branch.target = copy_expr (e->e.branch.target);
n->e.branch.index = copy_expr (e->e.branch.index);
n->e.branch.test = copy_expr (e->e.branch.test);
n->e.branch.args = copy_expr (e->e.branch.args);
return n;
case ex_return:
n = new_expr ();
*n = *e;
n->e.retrn.ret_val = copy_expr (n->e.retrn.ret_val);
return n;
case ex_count:
break;
}
internal_error (e, "invalid expression");
}
expr_t *
expr_file_line (expr_t *dst, const expr_t *src)
{
dst->file = src->file;
dst->line = src->line;
return dst;
}
const char *
new_label_name (void)
{
static int label = 0;
int lnum = ++label;
const char *fname = current_func->sym->name;
const char *lname;
lname = save_string (va (0, "$%s_%d", fname, lnum));
return lname;
}
static expr_t *
new_error_expr (void)
{
expr_t *e = new_expr ();
e->type = ex_error;
return e;
}
expr_t *
new_state_expr (expr_t *frame, expr_t *think, expr_t *step)
{
expr_t *s = new_expr ();
s->type = ex_state;
s->e.state.frame = frame;
s->e.state.think = think;
s->e.state.step = step;
return s;
}
expr_t *
new_bool_expr (ex_list_t *true_list, ex_list_t *false_list, expr_t *e)
{
expr_t *b = new_expr ();
b->type = ex_bool;
b->e.bool.true_list = true_list;
b->e.bool.false_list = false_list;
b->e.bool.e = e;
return b;
}
expr_t *
new_label_expr (void)
{
expr_t *l = new_expr ();
l->type = ex_label;
l->e.label.name = new_label_name ();
return l;
}
expr_t *
named_label_expr (symbol_t *label)
{
symbol_t *sym;
expr_t *l;
if (!current_func) {
// XXX this might be only an error
internal_error (0, "label defined outside of function scope");
}
sym = symtab_lookup (current_func->label_scope, label->name);
if (sym) {
return sym->s.expr;
}
l = new_label_expr ();
l->e.label.name = save_string (va (0, "%s_%s", l->e.label.name,
label->name));
l->e.label.symbol = label;
label->sy_type = sy_expr;
label->s.expr = l;
symtab_addsymbol (current_func->label_scope, label);
return label->s.expr;
}
expr_t *
new_label_ref (ex_label_t *label)
{
expr_t *l = new_expr ();
l->type = ex_labelref;
l->e.labelref.label = label;
label->used++;
return l;
}
expr_t *
new_block_expr (void)
{
expr_t *b = new_expr ();
b->type = ex_block;
b->e.block.head = 0;
b->e.block.tail = &b->e.block.head;
b->e.block.return_addr = __builtin_return_address (0);
return b;
}
expr_t *
new_binary_expr (int op, expr_t *e1, expr_t *e2)
{
expr_t *e = new_expr ();
if (e1->type == ex_error)
return e1;
if (e2 && e2->type == ex_error)
return e2;
e->type = ex_expr;
e->e.expr.op = op;
e->e.expr.e1 = e1;
e->e.expr.e2 = e2;
return e;
}
expr_t *
build_block_expr (expr_t *expr_list)
{
expr_t *b = new_block_expr ();
while (expr_list) {
expr_t *e = expr_list;
expr_list = e->next;
e->next = 0;
append_expr (b, e);
}
return b;
}
expr_t *
new_unary_expr (int op, expr_t *e1)
{
expr_t *e = new_expr ();
if (e1 && e1->type == ex_error)
return e1;
e->type = ex_uexpr;
e->e.expr.op = op;
e->e.expr.e1 = e1;
return e;
}
expr_t *
new_def_expr (def_t *def)
{
expr_t *e = new_expr ();
e->type = ex_def;
e->e.def = def;
return e;
}
expr_t *
new_symbol_expr (symbol_t *symbol)
{
expr_t *e = new_expr ();
e->type = ex_symbol;
e->e.symbol = symbol;
return e;
}
expr_t *
new_temp_def_expr (const type_t *type)
{
expr_t *e = new_expr ();
e->type = ex_temp;
e->e.temp.type = (type_t *) unalias_type (type); // FIXME cast
return e;
}
expr_t *
new_nil_expr (void)
{
expr_t *e = new_expr ();
e->type = ex_nil;
return e;
}
expr_t *
new_value_expr (ex_value_t *value)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = value;
return e;
}
expr_t *
new_name_expr (const char *name)
{
expr_t *e = new_expr ();
symbol_t *sym;
sym = symtab_lookup (current_symtab, name);
if (!sym)
sym = new_symbol (name);
e->type = ex_symbol;
e->e.symbol = sym;
return e;
}
expr_t *
new_string_expr (const char *string_val)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_string_val (string_val);
return e;
}
expr_t *
new_double_expr (double double_val)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_double_val (double_val);
return e;
}
expr_t *
new_float_expr (float float_val)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_float_val (float_val);
return e;
}
expr_t *
new_vector_expr (const float *vector_val)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_vector_val (vector_val);
return e;
}
expr_t *
new_vector_list (expr_t *e)
{
expr_t *t;
int count;
type_t *type = &type_vector;
expr_t *vec;
e = reverse_expr_list (e); // put the elements in the right order
for (t = e, count = 0; t; t = t->next)
count++;
switch (count) {
case 4:
type = &type_quaternion;
case 3:
// quaternion or vector. all expressions must be compatible with
// a float (ie, a scalar)
for (t = e; t; t = t->next) {
if (t->type == ex_error) {
return t;
}
if (!is_scalar (get_type (t))) {
return error (t, "invalid type for vector element");
}
}
vec = new_expr ();
vec->type = ex_vector;
vec->e.vector.type = type;
vec->e.vector.list = e;
break;
case 2:
if (e->type == ex_error || e->next->type == ex_error) {
return e;
}
if (is_scalar (get_type (e)) && is_scalar (get_type (e->next))) {
// scalar, scalar
// expand [x, y] to [x, y, 0]
e->next->next = new_float_expr (0);
vec = new_expr ();
vec->type = ex_vector;
vec->e.vector.type = type;
vec->e.vector.list = e;
break;
}
// quaternion. either scalar, vector or vector, scalar
if (is_scalar (get_type (e))
&& is_vector (get_type (e->next))) {
// scalar, vector
// swap expressions
t = e;
e = e->next;
e->next = t;
t->next = 0;
} else if (is_vector (get_type (e))
&& is_scalar (get_type (e->next))) {
// vector, scalar
// do nothing
} else {
return error (t, "invalid types for vector elements");
}
// v, s
vec = new_expr ();
vec->type = ex_vector;
vec->e.vector.type = &type_quaternion;
vec->e.vector.list = e;
break;
default:
return error (e, "invalid number of elements in vector exprssion");
}
return vec;
}
expr_t *
new_entity_expr (int entity_val)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_entity_val (entity_val);
return e;
}
expr_t *
new_field_expr (int field_val, type_t *type, def_t *def)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_field_val (field_val, type, def);
return e;
}
expr_t *
new_func_expr (int func_val, type_t *type)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_func_val (func_val, type);
return e;
}
expr_t *
new_pointer_expr (int val, type_t *type, def_t *def)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_pointer_val (val, type, def, 0);
return e;
}
expr_t *
new_quaternion_expr (const float *quaternion_val)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_quaternion_val (quaternion_val);
return e;
}
expr_t *
new_int_expr (int int_val)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_int_val (int_val);
return e;
}
expr_t *
new_uint_expr (unsigned uint_val)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_uint_val (uint_val);
return e;
}
expr_t *
new_short_expr (short short_val)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_short_val (short_val);
return e;
}
int
is_constant (expr_t *e)
{
while (e->type == ex_alias) {
e = e->e.alias.expr;
}
if (e->type == ex_nil || e->type == ex_value || e->type == ex_labelref
|| (e->type == ex_symbol && e->e.symbol->sy_type == sy_const)
|| (e->type == ex_symbol && e->e.symbol->sy_type == sy_var
&& e->e.symbol->s.def->constant))
return 1;
return 0;
}
int
is_selector (expr_t *e)
{
return e->type == ex_selector;
}
expr_t *
constant_expr (expr_t *e)
{
expr_t *new;
symbol_t *sym;
ex_value_t *value;
if (!is_constant (e))
return e;
if (e->type == ex_nil || e->type == ex_value || e->type == ex_labelref)
return e;
if (e->type != ex_symbol)
return e;
sym = e->e.symbol;
if (sym->sy_type == sy_const) {
value = sym->s.value;
} else if (sym->sy_type == sy_var && sym->s.def->constant) {
//FIXME pointers and fields
internal_error (e, "what to do here?");
//memset (&value, 0, sizeof (value));
//memcpy (&value.v, &D_INT (sym->s.def),
//type_size (sym->s.def->type) * sizeof (pr_type_t));
} else {
return e;
}
new = new_expr ();
new->type = ex_value;
new->line = e->line;
new->file = e->file;
new->e.value = value;
return new;
}
int
is_nil (expr_t *e)
{
return e->type == ex_nil;
}
int
is_string_val (expr_t *e)
{
if (e->type == ex_nil)
return 1;
if (e->type == ex_value && e->e.value->lltype == ev_string)
return 1;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_string)
return 1;
return 0;
}
const char *
expr_string (expr_t *e)
{
if (e->type == ex_nil)
return 0;
if (e->type == ex_value && e->e.value->lltype == ev_string)
return e->e.value->v.string_val;
internal_error (e, "not a string constant");
}
int
is_float_val (expr_t *e)
{
if (e->type == ex_nil)
return 1;
if (e->type == ex_value && e->e.value->lltype == ev_float)
return 1;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_float)
return 1;
return 0;
}
double
expr_double (expr_t *e)
{
if (e->type == ex_nil)
return 0;
if (e->type == ex_value && e->e.value->lltype == ev_double)
return e->e.value->v.double_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_double)
return e->e.symbol->s.value->v.double_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var
&& e->e.symbol->s.def->constant
&& is_double (e->e.symbol->s.def->type))
return D_DOUBLE (e->e.symbol->s.def);
internal_error (e, "not a double constant");
}
float
expr_float (expr_t *e)
{
if (e->type == ex_nil)
return 0;
if (e->type == ex_value && e->e.value->lltype == ev_float)
return e->e.value->v.float_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_float)
return e->e.symbol->s.value->v.float_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var
&& e->e.symbol->s.def->constant
&& is_float (e->e.symbol->s.def->type))
return D_FLOAT (e->e.symbol->s.def);
internal_error (e, "not a float constant");
}
int
is_vector_val (expr_t *e)
{
if (e->type == ex_nil)
return 1;
if (e->type == ex_value && e->e.value->lltype == ev_vector)
return 1;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_vector)
return 1;
return 0;
}
const float *
expr_vector (expr_t *e)
{
if (e->type == ex_nil)
return vec3_origin;
if (e->type == ex_value && e->e.value->lltype == ev_vector)
return e->e.value->v.vector_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_vector)
return e->e.symbol->s.value->v.vector_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var
&& e->e.symbol->s.def->constant
&& e->e.symbol->s.def->type->type == ev_vector)
return D_VECTOR (e->e.symbol->s.def);
internal_error (e, "not a vector constant");
}
int
is_quaternion_val (expr_t *e)
{
if (e->type == ex_nil)
return 1;
if (e->type == ex_value && e->e.value->lltype == ev_quaternion)
return 1;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_quaternion)
return 1;
return 0;
}
const float *
expr_quaternion (expr_t *e)
{
if (e->type == ex_nil)
return quat_origin;
if (e->type == ex_value && e->e.value->lltype == ev_quaternion)
return e->e.value->v.quaternion_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_quaternion)
return e->e.symbol->s.value->v.quaternion_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var
&& e->e.symbol->s.def->constant
&& e->e.symbol->s.def->type->type == ev_quaternion)
return D_QUAT (e->e.symbol->s.def);
internal_error (e, "not a quaternion constant");
}
int
is_int_val (expr_t *e)
{
if (e->type == ex_nil) {
return 1;
}
if (e->type == ex_value && e->e.value->lltype == ev_int) {
return 1;
}
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& is_integral (e->e.symbol->type)) {
return 1;
}
if (e->type == ex_def && e->e.def->constant
&& is_integral (e->e.def->type)) {
return 1;
}
return 0;
}
int
expr_int (expr_t *e)
{
if (e->type == ex_nil) {
return 0;
}
if (e->type == ex_value && e->e.value->lltype == ev_int) {
return e->e.value->v.int_val;
}
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& (e->e.symbol->type->type == ev_int
|| is_enum (e->e.symbol->type))) {
return e->e.symbol->s.value->v.int_val;
}
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var
&& e->e.symbol->s.def->constant
&& is_integral (e->e.symbol->s.def->type)) {
return D_INT (e->e.symbol->s.def);
}
if (e->type == ex_def && e->e.def->constant
&& is_integral (e->e.def->type)) {
return D_INT (e->e.def);
}
internal_error (e, "not an int constant");
}
int
is_uint_val (expr_t *e)
{
if (e->type == ex_nil) {
return 1;
}
if (e->type == ex_value && e->e.value->lltype == ev_uint) {
return 1;
}
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& is_integral (e->e.symbol->type)) {
return 1;
}
if (e->type == ex_def && e->e.def->constant
&& is_integral (e->e.def->type)) {
return 1;
}
return 0;
}
unsigned
expr_uint (expr_t *e)
{
if (e->type == ex_nil) {
return 0;
}
if (e->type == ex_value && e->e.value->lltype == ev_uint) {
return e->e.value->v.uint_val;
}
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_uint) {
return e->e.symbol->s.value->v.uint_val;
}
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var
&& e->e.symbol->s.def->constant
&& is_integral (e->e.symbol->s.def->type)) {
return D_INT (e->e.symbol->s.def);
}
if (e->type == ex_def && e->e.def->constant
&& is_integral (e->e.def->type)) {
return D_INT (e->e.def);
}
internal_error (e, "not an unsigned constant");
}
int
is_short_val (expr_t *e)
{
if (e->type == ex_nil) {
return 1;
}
if (e->type == ex_value && e->e.value->lltype == ev_short) {
return 1;
}
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_short) {
return 1;
}
return 0;
}
short
expr_short (expr_t *e)
{
if (e->type == ex_nil) {
return 0;
}
if (e->type == ex_value && e->e.value->lltype == ev_short) {
return e->e.value->v.short_val;
}
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_short) {
return e->e.symbol->s.value->v.short_val;
}
internal_error (e, "not a short constant");
}
int
is_integral_val (expr_t *e)
{
if (is_constant (e)) {
if (is_int_val (e)) {
return 1;
}
if (is_uint_val (e)) {
return 1;
}
if (is_short_val (e)) {
return 1;
}
}
return 0;
}
int
expr_integral (expr_t *e)
{
if (is_constant (e)) {
if (is_int_val (e)) {
return expr_int (e);
}
if (is_uint_val (e)) {
return expr_uint (e);
}
if (is_short_val (e)) {
return expr_short (e);
}
}
internal_error (e, "not an integral constant");
}
int
is_pointer_val (expr_t *e)
{
if (e->type == ex_value && e->e.value->lltype == ev_ptr) {
return 1;
}
return 0;
}
expr_t *
new_alias_expr (type_t *type, expr_t *expr)
{
if (expr->type == ex_alias) {
return new_offset_alias_expr (type, expr, 0);
}
expr_t *alias = new_expr ();
alias->type = ex_alias;
alias->e.alias.type = type;
alias->e.alias.expr = expr;
alias->file = expr->file;
alias->line = expr->line;
return alias;
}
expr_t *
new_offset_alias_expr (type_t *type, expr_t *expr, int offset)
{
if (expr->type == ex_alias && expr->e.alias.offset) {
expr_t *ofs_expr = expr->e.alias.offset;
if (!is_constant (ofs_expr)) {
internal_error (ofs_expr, "non-constant offset for alias expr");
}
offset += expr_int (ofs_expr);
if (expr->e.alias.expr->type == ex_alias) {
internal_error (expr, "alias expr of alias expr");
}
expr = expr->e.alias.expr;
}
expr_t *alias = new_expr ();
alias->type = ex_alias;
alias->e.alias.type = type;
alias->e.alias.expr = expr;
alias->e.alias.offset = new_int_expr (offset);
alias->file = expr->file;
alias->line = expr->line;
return alias;
}
expr_t *
new_address_expr (type_t *lvtype, expr_t *lvalue, expr_t *offset)
{
expr_t *addr = new_expr ();
addr->type = ex_address;
addr->e.address.type = pointer_type (lvtype);
addr->e.address.lvalue = lvalue;
addr->e.address.offset = offset;
return addr;
}
expr_t *
new_assign_expr (expr_t *dst, expr_t *src)
{
expr_t *addr = new_expr ();
addr->type = ex_assign;
addr->e.assign.dst = dst;
addr->e.assign.src = src;
return addr;
}
expr_t *
new_return_expr (expr_t *ret_val)
{
expr_t *retrn = new_expr ();
retrn->type = ex_return;
retrn->e.retrn.ret_val = ret_val;
return retrn;
}
static expr_t *
param_expr (const char *name, type_t *type)
{
symbol_t *sym;
expr_t *sym_expr;
sym = make_symbol (name, &type_param, pr.symtab->space, sc_extern);
if (!sym->table)
symtab_addsymbol (pr.symtab, sym);
sym_expr = new_symbol_expr (sym);
return new_alias_expr (type, sym_expr);
}
expr_t *
new_ret_expr (type_t *type)
{
return param_expr (".return", type);
}
expr_t *
new_param_expr (type_t *type, int num)
{
return param_expr (va (0, ".param_%d", num), type);
}
expr_t *
append_expr (expr_t *block, expr_t *e)
{
if (block->type != ex_block)
internal_error (block, "not a block expression");
if (!e || e->type == ex_error)
return block;
if (e->next)
internal_error (e, "append_expr: expr loop detected");
*block->e.block.tail = e;
block->e.block.tail = &e->next;
return block;
}
static symbol_t *
get_struct_field (const type_t *t1, expr_t *e1, expr_t *e2)
{
symtab_t *strct = t1->t.symtab;
symbol_t *sym = e2->e.symbol;//FIXME need to check
symbol_t *field;
if (!strct) {
error (e1, "dereferencing pointer to incomplete type");
return 0;
}
field = symtab_lookup (strct, sym->name);
if (!field && !is_entity(t1)) {
error (e2, "'%s' has no member named '%s'", t1->name + 4, sym->name);
e1->type = ex_error;
}
return field;
}
expr_t *
field_expr (expr_t *e1, expr_t *e2)
{
const type_t *t1, *t2;
expr_t *e;
t1 = get_type (e1);
if (e1->type == ex_error)
return e1;
if (t1->type == ev_entity) {
symbol_t *field = 0;
if (e2->type == ex_symbol)
field = get_struct_field (&type_entity, e1, e2);
if (field) {
e2 = new_field_expr (0, field->type, field->s.def);
e = new_binary_expr ('.', e1, e2);
e->e.expr.type = field->type;
return e;
} else {
t2 = get_type (e2);
if (e2->type == ex_error)
return e2;
if (t2->type == ev_field) {
e = new_binary_expr ('.', e1, e2);
e->e.expr.type = t2->t.fldptr.type;
return e;
}
}
} else if (t1->type == ev_ptr) {
if (is_struct (t1->t.fldptr.type)) {
symbol_t *field;
field = get_struct_field (t1->t.fldptr.type, e1, e2);
if (!field)
return e1;
e2->type = ex_value;
e2->e.value = new_short_val (field->s.offset);
e = new_address_expr (field->type, e1, e2);
return unary_expr ('.', e);
} else if (is_class (t1->t.fldptr.type)) {
class_t *class = t1->t.fldptr.type->t.class;
symbol_t *sym = e2->e.symbol;//FIXME need to check
symbol_t *ivar;
int protected = class_access (current_class, class);
ivar = class_find_ivar (class, protected, sym->name);
if (!ivar)
return new_error_expr ();
e2->type = ex_value;
e2->e.value = new_short_val (ivar->s.offset);
e = new_address_expr (ivar->type, e1, e2);
return unary_expr ('.', e);
}
} else if (t1->type == ev_vector || t1->type == ev_quaternion
|| is_struct (t1)) {
symbol_t *field;
field = get_struct_field (t1, e1, e2);
if (!field)
return e1;
if (e1->type == ex_expr && e1->e.expr.op == '.'
&& is_entity(get_type (e1->e.expr.e1))) {
// undo the . expression
e2 = e1->e.expr.e2;
e1 = e1->e.expr.e1;
// offset the field expresion
if (e2->type == ex_symbol) {
symbol_t *sym;
def_t *def;
sym = symtab_lookup (pr.entity_fields, e2->e.symbol->name);
if (!sym) {
internal_error (e2, "failed to find entity field %s",
e2->e.symbol->name);
}
def = sym->s.def;
e2 = new_field_expr (0, field->type, def);
} else if (e2->type != ex_value
|| e2->e.value->lltype != ev_field) {
internal_error (e2, "unexpected field exression");
}
e2->e.value = new_field_val (e2->e.value->v.pointer.val + field->s.offset, field->type, e2->e.value->v.pointer.def);
// create a new . expression
return field_expr (e1, e2);
} else {
if (e1->type == ex_uexpr && e1->e.expr.op == '.') {
e2->type = ex_value;
e2->e.value = new_short_val (field->s.offset);
e = address_expr (e1, e2, field->type);
return unary_expr ('.', e);
} else {
return new_offset_alias_expr (field->type, e1, field->s.offset);
}
}
} else if (is_class (t1)) {
//Class instance variables aren't allowed and thus declaring one
//is treated as an error, so this is a follow-on error.
return error (e1, "class instance access");
}
return type_mismatch (e1, e2, '.');
}
expr_t *
convert_from_bool (expr_t *e, type_t *type)
{
expr_t *zero;
expr_t *one;
expr_t *cond;
if (is_float (type)) {
one = new_float_expr (1);
zero = new_float_expr (0);
} else if (is_int (type)) {
one = new_int_expr (1);
zero = new_int_expr (0);
} else if (is_enum (type) && enum_as_bool (type, &zero, &one)) {
// don't need to do anything
} else if (is_uint (type)) {
one = new_uint_expr (1);
zero = new_uint_expr (0);
} else {
return error (e, "can't convert from bool value");
}
cond = new_expr ();
*cond = *e;
cond->next = 0;
cond = conditional_expr (cond, one, zero);
e->type = cond->type;
e->e = cond->e;
return e;
}
void
convert_int (expr_t *e)
{
float float_val = expr_int (e);
e->type = ex_value;
e->e.value = new_float_val (float_val);
}
void
convert_short (expr_t *e)
{
float float_val = expr_short (e);
e->type = ex_value;
e->e.value = new_float_val (float_val);
}
void
convert_short_int (expr_t *e)
{
float int_val = expr_short (e);
e->type = ex_value;
e->e.value = new_int_val (int_val);
}
void
convert_double (expr_t *e)
{
float float_val = expr_double (e);
e->type = ex_value;
e->e.value = new_float_val (float_val);
}
expr_t *
convert_nil (expr_t *e, type_t *t)
{
e->e.nil = t;
return e;
}
int
is_compare (int op)
{
if (op == EQ || op == NE || op == LE || op == GE || op == LT || op == GT
|| op == '>' || op == '<')
return 1;
return 0;
}
int
is_math_op (int op)
{
if (op == '*' || op == '/' || op == '+' || op == '-')
return 1;
return 0;
}
int
is_logic (int op)
{
if (op == OR || op == AND)
return 1;
return 0;
}
int
has_function_call (expr_t *e)
{
switch (e->type) {
case ex_bool:
return has_function_call (e->e.bool.e);
case ex_block:
if (e->e.block.is_call)
return 1;
for (e = e->e.block.head; e; e = e->next)
if (has_function_call (e))
return 1;
return 0;
case ex_expr:
return (has_function_call (e->e.expr.e1)
|| has_function_call (e->e.expr.e2));
case ex_uexpr:
return has_function_call (e->e.expr.e1);
case ex_alias:
return has_function_call (e->e.alias.expr);
case ex_address:
return has_function_call (e->e.address.lvalue);
case ex_assign:
return (has_function_call (e->e.assign.dst)
|| has_function_call (e->e.assign.src));
case ex_branch:
if (e->e.branch.type == pr_branch_call) {
return 1;
}
if (e->e.branch.type == pr_branch_jump) {
return 0;
}
return has_function_call (e->e.branch.test);
case ex_return:
return has_function_call (e->e.retrn.ret_val);
case ex_error:
case ex_state:
case ex_label:
case ex_labelref:
case ex_def:
case ex_symbol:
case ex_temp:
case ex_vector:
case ex_selector:
case ex_nil:
case ex_value:
case ex_compound:
case ex_memset:
return 0;
case ex_count:
break;
}
internal_error (e, "invalid expression type");
}
int
is_function_call (expr_t *e)
{
return e->type == ex_branch && e->e.branch.type == pr_branch_call;
}
expr_t *
asx_expr (int op, expr_t *e1, expr_t *e2)
{
if (e1->type == ex_error)
return e1;
else if (e2->type == ex_error)
return e2;
else {
expr_t *e = new_expr ();
*e = *e1;
e2->paren = 1;
return assign_expr (e, binary_expr (op, e1, e2));
}
}
expr_t *
unary_expr (int op, expr_t *e)
{
vec3_t v;
quat_t q;
const char *s;
expr_t *new;
type_t *t;
convert_name (e);
if (e->type == ex_error)
return e;
switch (op) {
case '-':
if (!is_math (get_type (e)))
return error (e, "invalid type for unary -");
if (is_constant (e)) {
switch (extract_type (e)) {
case ev_string:
case ev_entity:
case ev_field:
case ev_func:
case ev_ptr:
internal_error (e, "type check failed!");
case ev_double:
new = new_double_expr (-expr_double (e));
new->implicit = e->implicit;
return new;
case ev_float:
return new_float_expr (-expr_float (e));
case ev_vector:
VectorNegate (expr_vector (e), v);
return new_vector_expr (v);
case ev_quaternion:
QuatNegate (expr_vector (e), q);
return new_vector_expr (q);
case ev_long:
case ev_ulong:
case ev_ushort:
internal_error (e, "long not implemented");
case ev_int:
return new_int_expr (-expr_int (e));
case ev_uint:
return new_uint_expr (-expr_uint (e));
case ev_short:
return new_short_expr (-expr_short (e));
case ev_invalid:
case ev_type_count:
case ev_void:
break;
}
internal_error (e, "weird expression type");
}
switch (e->type) {
case ex_value: // should be handled above
case ex_error:
case ex_label:
case ex_labelref:
case ex_state:
case ex_compound:
case ex_memset:
case ex_selector:
case ex_return:
internal_error (e, "unexpected expression type");
case ex_uexpr:
if (e->e.expr.op == '-') {
return e->e.expr.e1;
}
{
expr_t *n = new_unary_expr (op, e);
n->e.expr.type = get_type (e);
return n;
}
case ex_block:
if (!e->e.block.result) {
return error (e, "invalid type for unary -");
}
{
expr_t *n = new_unary_expr (op, e);
n->e.expr.type = get_type (e);
return n;
}
case ex_branch:
return error (e, "invalid type for unary -");
case ex_expr:
case ex_bool:
case ex_temp:
case ex_vector:
case ex_alias:
case ex_assign:
{
expr_t *n = new_unary_expr (op, e);
n->e.expr.type = get_type (e);
return n;
}
case ex_def:
{
expr_t *n = new_unary_expr (op, e);
n->e.expr.type = e->e.def->type;
return n;
}
case ex_symbol:
{
expr_t *n = new_unary_expr (op, e);
n->e.expr.type = e->e.symbol->type;
return n;
}
case ex_nil:
case ex_address:
return error (e, "invalid type for unary -");
case ex_count:
internal_error (e, "invalid expression");
}
break;
case '!':
if (is_constant (e)) {
switch (extract_type (e)) {
case ev_entity:
case ev_field:
case ev_func:
case ev_ptr:
internal_error (e, 0);
case ev_string:
s = expr_string (e);
return new_int_expr (!s || !s[0]);
case ev_double:
return new_int_expr (!expr_double (e));
case ev_float:
return new_int_expr (!expr_float (e));
case ev_vector:
return new_int_expr (!VectorIsZero (expr_vector (e)));
case ev_quaternion:
return new_int_expr (!QuatIsZero (expr_quaternion (e)));
case ev_long:
case ev_ulong:
case ev_ushort:
internal_error (e, "long not implemented");
case ev_int:
return new_int_expr (!expr_int (e));
case ev_uint:
return new_uint_expr (!expr_uint (e));
case ev_short:
return new_short_expr (!expr_short (e));
case ev_invalid:
case ev_type_count:
case ev_void:
break;
}
internal_error (e, "weird expression type");
}
switch (e->type) {
case ex_value: // should be handled above
case ex_error:
case ex_label:
case ex_labelref:
case ex_state:
case ex_compound:
case ex_memset:
case ex_selector:
case ex_return:
internal_error (e, "unexpected expression type");
case ex_bool:
return new_bool_expr (e->e.bool.false_list,
e->e.bool.true_list, e);
case ex_block:
if (!e->e.block.result)
return error (e, "invalid type for unary !");
case ex_uexpr:
case ex_expr:
case ex_def:
case ex_symbol:
case ex_temp:
case ex_vector:
case ex_alias:
case ex_address:
case ex_assign:
{
expr_t *n = new_unary_expr (op, e);
if (options.code.progsversion > PROG_ID_VERSION)
n->e.expr.type = &type_int;
else
n->e.expr.type = &type_float;
return n;
}
case ex_branch:
case ex_nil:
return error (e, "invalid type for unary !");
case ex_count:
internal_error (e, "invalid expression");
}
break;
case '~':
if (is_constant (e)) {
switch (extract_type (e)) {
case ev_string:
case ev_entity:
case ev_field:
case ev_func:
case ev_ptr:
case ev_vector:
case ev_double:
return error (e, "invalid type for unary ~");
case ev_float:
return new_float_expr (~(int) expr_float (e));
case ev_quaternion:
QuatConj (expr_vector (e), q);
return new_vector_expr (q);
case ev_long:
case ev_ulong:
case ev_ushort:
internal_error (e, "long not implemented");
case ev_int:
return new_int_expr (~expr_int (e));
case ev_uint:
return new_uint_expr (~expr_uint (e));
case ev_short:
return new_short_expr (~expr_short (e));
case ev_invalid:
t = get_type (e);
if (t->meta == ty_enum) {
return new_int_expr (~expr_int (e));
}
break;
case ev_type_count:
case ev_void:
break;
}
internal_error (e, "weird expression type");
}
switch (e->type) {
case ex_value: // should be handled above
case ex_error:
case ex_label:
case ex_labelref:
case ex_state:
case ex_compound:
case ex_memset:
case ex_selector:
case ex_return:
internal_error (e, "unexpected expression type");
case ex_uexpr:
if (e->e.expr.op == '~')
return e->e.expr.e1;
goto bitnot_expr;
case ex_block:
if (!e->e.block.result)
return error (e, "invalid type for unary ~");
goto bitnot_expr;
case ex_branch:
return error (e, "invalid type for unary ~");
case ex_expr:
case ex_bool:
case ex_def:
case ex_symbol:
case ex_temp:
case ex_vector:
case ex_alias:
case ex_assign:
bitnot_expr:
if (options.code.progsversion == PROG_ID_VERSION) {
expr_t *n1 = new_int_expr (-1);
return binary_expr ('-', n1, e);
} else {
expr_t *n = new_unary_expr (op, e);
type_t *t = get_type (e);
if (!is_int(t) && !is_float(t)
&& !is_quaternion(t))
return error (e, "invalid type for unary ~");
n->e.expr.type = t;
return n;
}
case ex_nil:
case ex_address:
return error (e, "invalid type for unary ~");
case ex_count:
internal_error (e, "invalid expression");
}
break;
case '.':
if (extract_type (e) != ev_ptr)
return error (e, "invalid type for unary .");
e = new_unary_expr ('.', e);
e->e.expr.type = get_type (e->e.expr.e1)->t.fldptr.type;
return e;
case '+':
if (!is_math (get_type (e)))
return error (e, "invalid type for unary +");
return e;
}
internal_error (e, 0);
}
expr_t *
build_function_call (expr_t *fexpr, const type_t *ftype, expr_t *params)
{
expr_t *e;
expr_t *p;
int arg_count = 0, parm_count = 0;
int i;
expr_t *args = 0, **a = &args;
type_t *arg_types[MAX_PARMS];
expr_t *arg_exprs[MAX_PARMS][2];
int arg_expr_count = 0;
expr_t *assign;
expr_t *call;
expr_t *err = 0;
for (e = params; e; e = e->next) {
if (e->type == ex_error)
return e;
arg_count++;
}
if (arg_count > MAX_PARMS) {
return error (fexpr, "more than %d parameters", MAX_PARMS);
}
if (ftype->t.func.num_params < -1) {
if (-arg_count > ftype->t.func.num_params + 1) {
if (!options.traditional)
return error (fexpr, "too few arguments");
if (options.warnings.traditional)
warning (fexpr, "too few arguments");
}
parm_count = -ftype->t.func.num_params - 1;
} else if (ftype->t.func.num_params >= 0) {
if (arg_count > ftype->t.func.num_params) {
return error (fexpr, "too many arguments");
} else if (arg_count < ftype->t.func.num_params) {
if (!options.traditional)
return error (fexpr, "too few arguments");
if (options.warnings.traditional)
warning (fexpr, "too few arguments");
}
parm_count = ftype->t.func.num_params;
}
for (i = arg_count - 1, e = params; i >= 0; i--, e = e->next) {
type_t *t;
if (e->type == ex_compound) {
if (i < parm_count) {
t = ftype->t.func.param_types[i];
} else {
return error (e, "cannot pass compound initializer "
"through ...");
}
} else {
t = get_type (e);
}
if (!t) {
return e;
}
if (!type_size (t))
err = error (e, "type of formal parameter %d is incomplete",
i + 1);
if (type_size (t) > type_size (&type_param))
err = error (e, "formal parameter %d is too large to be passed by"
" value", i + 1);
if (i < parm_count) {
if (e->type == ex_nil)
convert_nil (e, t = ftype->t.func.param_types[i]);
if (e->type == ex_bool)
convert_from_bool (e, ftype->t.func.param_types[i]);
if (e->type == ex_error)
return e;
if (!type_assignable (ftype->t.func.param_types[i], t)) {
err = param_mismatch (e, i + 1, fexpr->e.symbol->name,
ftype->t.func.param_types[i], t);
}
t = ftype->t.func.param_types[i];
} else {
if (e->type == ex_nil)
convert_nil (e, t = type_nil);
if (e->type == ex_bool)
convert_from_bool (e, get_type (e));
if (is_int_val (e)
&& options.code.progsversion == PROG_ID_VERSION)
convert_int (e);
if (options.code.promote_float) {
if (is_float (get_type (e))) {
t = &type_double;
}
} else {
if (is_double (get_type (e))) {
if (!e->implicit) {
warning (e, "passing double into ... function");
}
if (is_constant (e)) {
// don't auto-demote non-constant doubles
t = &type_float;
}
}
}
if (is_int_val (e) && options.warnings.vararg_integer)
warning (e, "passing int constant into ... function");
}
arg_types[arg_count - 1 - i] = t;
}
if (err)
return err;
call = expr_file_line (new_block_expr (), fexpr);
call->e.block.is_call = 1;
for (p = params, i = 0; p; p = p->next, i++) {
expr_t *e = p;
if (e->type == ex_compound) {
e = expr_file_line (initialized_temp_expr (arg_types[i], e), e);
}
// FIXME this is target-specific info and should not be in the
// expression tree
// That, or always use a temp, since it should get optimized out
if (has_function_call (e)) {
expr_t *cast = cast_expr (arg_types[i], convert_vector (e));
expr_t *tmp = new_temp_def_expr (arg_types[i]);
*a = expr_file_line (tmp, e);
arg_exprs[arg_expr_count][0] = expr_file_line (cast, e);
arg_exprs[arg_expr_count][1] = *a;
arg_expr_count++;
} else {
*a = expr_file_line (cast_expr (arg_types[i], convert_vector (e)),
e);
}
a = &(*a)->next;
}
for (i = 0; i < arg_expr_count - 1; i++) {
assign = assign_expr (arg_exprs[i][1], arg_exprs[i][0]);
append_expr (call, expr_file_line (assign, arg_exprs[i][0]));
}
if (arg_expr_count) {
e = assign_expr (arg_exprs[arg_expr_count - 1][1],
arg_exprs[arg_expr_count - 1][0]);
e = expr_file_line (e, arg_exprs[arg_expr_count - 1][0]);
append_expr (call, e);
}
e = expr_file_line (call_expr (fexpr, args, ftype->t.func.type), fexpr);
call->e.block.result = e;
return call;
}
expr_t *
function_expr (expr_t *fexpr, expr_t *params)
{
type_t *ftype;
find_function (fexpr, params);
ftype = get_type (fexpr);
if (fexpr->type == ex_error)
return fexpr;
if (ftype->type != ev_func) {
if (fexpr->type == ex_symbol)
return error (fexpr, "Called object \"%s\" is not a function",
fexpr->e.symbol->name);
else
return error (fexpr, "Called object is not a function");
}
if (fexpr->type == ex_symbol && params && is_string_val (params)) {
// FIXME eww, I hate this, but it's needed :(
// FIXME make a qc hook? :)
if (strncmp (fexpr->e.symbol->name, "precache_sound", 14) == 0)
PrecacheSound (expr_string (params), fexpr->e.symbol->name[14]);
else if (strncmp (fexpr->e.symbol->name, "precache_model", 14) == 0)
PrecacheModel (expr_string (params), fexpr->e.symbol->name[14]);
else if (strncmp (fexpr->e.symbol->name, "precache_file", 13) == 0)
PrecacheFile (expr_string (params), fexpr->e.symbol->name[13]);
}
return build_function_call (fexpr, ftype, params);
}
expr_t *
branch_expr (int op, expr_t *test, expr_t *label)
{
// need to translated op due to precedence rules dictating the layout
// of the token ids
static pr_branch_e branch_type [] = {
pr_branch_eq,
pr_branch_ne,
pr_branch_lt,
pr_branch_gt,
pr_branch_le,
pr_branch_ge,
};
if (op < EQ || op > LE) {
internal_error (label, "invalid op: %d", op);
}
if (label && label->type != ex_label) {
internal_error (label, "not a label");
}
if (label) {
label->e.label.used++;
}
expr_t *branch = new_expr ();
branch->type = ex_branch;
branch->e.branch.type = branch_type[op - EQ];
branch->e.branch.target = label;
branch->e.branch.test = test;
return branch;
}
expr_t *
goto_expr (expr_t *label)
{
if (label && label->type != ex_label) {
internal_error (label, "not a label");
}
if (label) {
label->e.label.used++;
}
expr_t *branch = new_expr ();
branch->type = ex_branch;
branch->e.branch.type = pr_branch_jump;
branch->e.branch.target = label;
return branch;
}
expr_t *
jump_table_expr (expr_t *table, expr_t *index)
{
expr_t *branch = new_expr ();
branch->type = ex_branch;
branch->e.branch.type = pr_branch_jump;
branch->e.branch.target = table;//FIXME separate? all branch types can
branch->e.branch.index = index;
return branch;
}
expr_t *
call_expr (expr_t *func, expr_t *args, type_t *ret_type)
{
expr_t *branch = new_expr ();
branch->type = ex_branch;
branch->e.branch.type = pr_branch_call;
branch->e.branch.target = func;
branch->e.branch.args = args;
branch->e.branch.ret_type = ret_type;
return branch;
}
expr_t *
return_expr (function_t *f, expr_t *e)
{
const type_t *t;
const type_t *ret_type = unalias_type (f->type->t.func.type);
if (!e) {
if (!is_void(ret_type)) {
if (options.traditional) {
if (options.warnings.traditional)
warning (e,
"return from non-void function without a value");
// force a nil return value in case qf code is being generated
e = new_nil_expr ();
} else {
e = error (e, "return from non-void function without a value");
return e;
}
}
// the traditional check above may have set e
if (!e) {
return new_return_expr (0);
}
}
if (e->type == ex_compound) {
e = expr_file_line (initialized_temp_expr (ret_type, e), e);
}
t = get_type (e);
if (!t) {
return e;
}
if (is_void(ret_type)) {
if (!options.traditional)
return error (e, "returning a value for a void function");
if (options.warnings.traditional)
warning (e, "returning a value for a void function");
}
if (e->type == ex_bool) {
e = convert_from_bool (e, (type_t *) ret_type); //FIXME cast
}
if (is_float(ret_type) && is_int_val (e)) {
convert_int (e);
t = &type_float;
}
if (is_void(t)) {
if (e->type == ex_nil) {
t = ret_type;
convert_nil (e, (type_t *) t);//FIXME cast
} else {
if (!options.traditional)
return error (e, "void value not ignored as it ought to be");
if (options.warnings.traditional)
warning (e, "void value not ignored as it ought to be");
//FIXME does anything need to be done here?
}
}
if (!type_assignable (ret_type, t)) {
if (!options.traditional)
return error (e, "type mismatch for return value of %s",
f->sym->name);
if (options.warnings.traditional)
warning (e, "type mismatch for return value of %s",
f->sym->name);
} else {
if (ret_type != t) {
e = cast_expr ((type_t *) ret_type, e);//FIXME cast
t = f->sym->type->t.func.type;
}
}
if (e->type == ex_vector) {
e = assign_expr (new_temp_def_expr (t), e);
}
if (e->type == ex_block) {
e->e.block.result->rvalue = 1;
}
return new_return_expr (e);
}
expr_t *
conditional_expr (expr_t *cond, expr_t *e1, expr_t *e2)
{
expr_t *block = new_block_expr ();
type_t *type1 = get_type (e1);
type_t *type2 = get_type (e2);
expr_t *tlabel = new_label_expr ();
expr_t *flabel = new_label_expr ();
expr_t *elabel = new_label_expr ();
if (cond->type == ex_error)
return cond;
if (e1->type == ex_error)
return e1;
if (e2->type == ex_error)
return e2;
cond = convert_bool (cond, 1);
if (cond->type == ex_error)
return cond;
backpatch (cond->e.bool.true_list, tlabel);
backpatch (cond->e.bool.false_list, flabel);
block->e.block.result = (type1 == type2) ? new_temp_def_expr (type1) : 0;
append_expr (block, cond);
append_expr (cond->e.bool.e, flabel);
if (block->e.block.result)
append_expr (block, assign_expr (block->e.block.result, e2));
else
append_expr (block, e2);
append_expr (block, goto_expr (elabel));
append_expr (block, tlabel);
if (block->e.block.result)
append_expr (block, assign_expr (block->e.block.result, e1));
else
append_expr (block, e1);
append_expr (block, elabel);
return block;
}
expr_t *
incop_expr (int op, expr_t *e, int postop)
{
expr_t *one;
if (e->type == ex_error)
return e;
one = new_int_expr (1); // int constants get auto-cast to float
if (postop) {
expr_t *t1, *t2;
type_t *type = get_type (e);
expr_t *block = new_block_expr ();
expr_t *res = new_expr ();
if (e->type == ex_error) // get_type failed
return e;
t1 = new_temp_def_expr (type);
t2 = new_temp_def_expr (type);
append_expr (block, assign_expr (t1, e));
append_expr (block, assign_expr (t2, binary_expr (op, t1, one)));
res = copy_expr (e);
if (res->type == ex_uexpr && res->e.expr.op == '.')
res = pointer_expr (address_expr (res, 0, 0));
append_expr (block, assign_expr (res, t2));
block->e.block.result = t1;
return block;
} else {
return asx_expr (op, e, one);
}
}
expr_t *
array_expr (expr_t *array, expr_t *index)
{
type_t *array_type = get_type (array);
type_t *index_type = get_type (index);
expr_t *scale;
expr_t *offset;
expr_t *base;
expr_t *e;
int ind = 0;
if (array->type == ex_error)
return array;
if (index->type == ex_error)
return index;
if (array_type->type != ev_ptr && !is_array (array_type))
return error (array, "not an array");
if (!is_integral (index_type))
return error (index, "invalid array index type");
if (is_short_val (index))
ind = expr_short (index);
if (is_int_val (index))
ind = expr_int (index);
if (array_type->t.func.num_params
&& is_constant (index)
&& (ind < array_type->t.array.base
|| ind - array_type->t.array.base >= array_type->t.array.size))
return error (index, "array index out of bounds");
scale = new_int_expr (type_size (array_type->t.array.type));
index = binary_expr ('*', index, scale);
base = new_int_expr (array_type->t.array.base);
offset = binary_expr ('*', base, scale);
index = binary_expr ('-', index, offset);
if (is_short_val (index))
ind = expr_short (index);
if (is_int_val (index))
ind = expr_int (index);
if ((is_constant (index) && ind < 32768 && ind >= -32768))
index = new_short_expr (ind);
if (is_array (array_type)) {
e = address_expr (array, index, array_type->t.array.type);
} else {
if (!is_short_val (index) || expr_short (index)) {
e = new_address_expr (array_type->t.array.type, array, index);
} else {
e = array;
}
}
e = unary_expr ('.', e);
return e;
}
expr_t *
pointer_expr (expr_t *pointer)
{
type_t *pointer_type = get_type (pointer);
if (pointer->type == ex_error)
return pointer;
if (pointer_type->type != ev_ptr)
return error (pointer, "not a pointer");
return array_expr (pointer, new_int_expr (0));
}
expr_t *
address_expr (expr_t *e1, expr_t *e2, type_t *t)
{
expr_t *e;
if (e1->type == ex_error)
return e1;
if (!t)
t = get_type (e1);
switch (e1->type) {
case ex_def:
{
def_t *def = e1->e.def;
type_t *type = def->type;
if (is_array (type)) {
e = e1;
e->type = ex_value;
e->e.value = new_pointer_val (0, t, def, 0);
} else {
e = new_pointer_expr (0, t, def);
e->line = e1->line;
e->file = e1->file;
}
}
break;
case ex_symbol:
if (e1->e.symbol->sy_type == sy_var) {
def_t *def = e1->e.symbol->s.def;
type_t *type = def->type;
if (is_array (type)) {
e = e1;
e->type = ex_value;
e->e.value = new_pointer_val (0, t, def, 0);
} else {
e = new_pointer_expr (0, t, def);
e->line = e1->line;
e->file = e1->file;
}
break;
}
return error (e1, "invalid type for unary &");
case ex_expr:
if (e1->e.expr.op == '.') {
e = new_address_expr (e1->e.expr.type,
e1->e.expr.e1, e1->e.expr.e2);
break;
}
return error (e1, "invalid type for unary &");
case ex_uexpr:
if (e1->e.expr.op == '.') {
e = e1->e.expr.e1;
if (e->type == ex_expr && e->e.expr.op == '.') {
e = new_address_expr (e->e.expr.type, e->e.expr.e1, e->e.expr.e2);
}
break;
}
return error (e1, "invalid type for unary &");
case ex_label:
return new_label_ref (&e1->e.label);
case ex_temp:
e = new_address_expr (t, e1, 0);
break;
case ex_alias:
if (!t) {
t = e1->e.alias.type;
}
if (e1->e.alias.offset) {
if (e2) {
e2 = binary_expr ('+', e1->e.alias.offset, e2);
} else {
e2 = e1->e.alias.offset;
}
}
return address_expr (e1->e.alias.expr, e2, t);
default:
return error (e1, "invalid type for unary &");
}
if (e2) {
if (e2->type == ex_error)
return e2;
if (is_pointer_val (e) && is_integral_val (e2)) {
int base = e->e.value->v.pointer.val;
int offset = expr_integral (e2);
def_t *def = e->e.value->v.pointer.def;
e->e.value = new_pointer_val (base + offset, t, def, 0);
} else {
expr_t *offset = 0;
if (e->type == ex_address) {
offset = e->e.address.offset;
e1 = e->e.address.lvalue;
} else {
e1 = e;
}
if (offset) {
e2 = binary_expr ('+', offset, e2);
}
e = new_address_expr (t, e1, e2);
}
}
return e;
}
expr_t *
build_if_statement (int not, expr_t *test, expr_t *s1, expr_t *els, expr_t *s2)
{
int line = pr.source_line;
pr_string_t file = pr.source_file;
expr_t *if_expr;
expr_t *tl = new_label_expr ();
expr_t *fl = new_label_expr ();
if (els && !s2) {
warning (els,
"suggest braces around empty body in an ‘else’ statement");
}
if (!els && !s1) {
warning (test,
"suggest braces around empty body in an ‘if’ statement");
}
pr.source_line = test->line;
pr.source_file = test->file;
if_expr = new_block_expr ();
test = convert_bool (test, 1);
if (test->type != ex_error) {
if (not) {
backpatch (test->e.bool.true_list, fl);
backpatch (test->e.bool.false_list, tl);
} else {
backpatch (test->e.bool.true_list, tl);
backpatch (test->e.bool.false_list, fl);
}
append_expr (test->e.bool.e, tl);
append_expr (if_expr, test);
}
append_expr (if_expr, s1);
if (els) {
pr.source_line = els->line;
pr.source_file = els->file;
}
if (s2) {
expr_t *nl = new_label_expr ();
append_expr (if_expr, goto_expr (nl));
append_expr (if_expr, fl);
append_expr (if_expr, s2);
append_expr (if_expr, nl);
} else {
append_expr (if_expr, fl);
}
pr.source_line = line;
pr.source_file = file;
return if_expr;
}
expr_t *
build_while_statement (int not, expr_t *test, expr_t *statement,
expr_t *break_label, expr_t *continue_label)
{
int line = pr.source_line;
pr_string_t file = pr.source_file;
expr_t *l1 = new_label_expr ();
expr_t *l2 = break_label;
expr_t *while_expr;
pr.source_line = test->line;
pr.source_file = test->file;
while_expr = new_block_expr ();
append_expr (while_expr, goto_expr (continue_label));
append_expr (while_expr, l1);
append_expr (while_expr, statement);
append_expr (while_expr, continue_label);
test = convert_bool (test, 1);
if (test->type != ex_error) {
if (not) {
backpatch (test->e.bool.true_list, l2);
backpatch (test->e.bool.false_list, l1);
} else {
backpatch (test->e.bool.true_list, l1);
backpatch (test->e.bool.false_list, l2);
}
append_expr (test->e.bool.e, l2);
append_expr (while_expr, test);
}
pr.source_line = line;
pr.source_file = file;
return while_expr;
}
expr_t *
build_do_while_statement (expr_t *statement, int not, expr_t *test,
expr_t *break_label, expr_t *continue_label)
{
expr_t *l1 = new_label_expr ();
int line = pr.source_line;
pr_string_t file = pr.source_file;
expr_t *do_while_expr;
if (!statement) {
warning (break_label,
"suggest braces around empty body in a ‘do’ statement");
}
pr.source_line = test->line;
pr.source_file = test->file;
do_while_expr = new_block_expr ();
append_expr (do_while_expr, l1);
append_expr (do_while_expr, statement);
append_expr (do_while_expr, continue_label);
test = convert_bool (test, 1);
if (test->type != ex_error) {
if (not) {
backpatch (test->e.bool.true_list, break_label);
backpatch (test->e.bool.false_list, l1);
} else {
backpatch (test->e.bool.true_list, l1);
backpatch (test->e.bool.false_list, break_label);
}
append_expr (test->e.bool.e, break_label);
append_expr (do_while_expr, test);
}
pr.source_line = line;
pr.source_file = file;
return do_while_expr;
}
expr_t *
build_for_statement (expr_t *init, expr_t *test, expr_t *next,
expr_t *statement,
expr_t *break_label, expr_t *continue_label)
{
expr_t *tl = new_label_expr ();
expr_t *fl = break_label;
expr_t *l1 = 0;
expr_t *t;
int line = pr.source_line;
pr_string_t file = pr.source_file;
expr_t *for_expr;
if (next)
t = next;
else if (test)
t = test;
else if (init)
t = init;
else
t = continue_label;
pr.source_line = t->line;
pr.source_file = t->file;
for_expr = new_block_expr ();
append_expr (for_expr, init);
if (test) {
l1 = new_label_expr ();
append_expr (for_expr, goto_expr (l1));
}
append_expr (for_expr, tl);
append_expr (for_expr, statement);
append_expr (for_expr, continue_label);
append_expr (for_expr, next);
if (test) {
append_expr (for_expr, l1);
test = convert_bool (test, 1);
if (test->type != ex_error) {
backpatch (test->e.bool.true_list, tl);
backpatch (test->e.bool.false_list, fl);
append_expr (test->e.bool.e, fl);
append_expr (for_expr, test);
}
} else {
append_expr (for_expr, goto_expr (tl));
append_expr (for_expr, fl);
}
pr.source_line = line;
pr.source_file = file;
return for_expr;
}
expr_t *
build_state_expr (expr_t *e)
{
expr_t *frame = 0;
expr_t *think = 0;
expr_t *step = 0;
e = reverse_expr_list (e);
frame = e;
think = frame->next;
step = think->next;
if (think->type == ex_symbol)
think = think_expr (think->e.symbol);
if (is_int_val (frame))
convert_int (frame);
if (!type_assignable (&type_float, get_type (frame)))
return error (frame, "invalid type for frame number");
if (extract_type (think) != ev_func)
return error (think, "invalid type for think");
if (step) {
if (step->next)
return error (step->next, "too many state arguments");
if (is_int_val (step))
convert_int (step);
if (!type_assignable (&type_float, get_type (step)))
return error (step, "invalid type for step");
}
return new_state_expr (frame, think, step);
}
expr_t *
think_expr (symbol_t *think_sym)
{
symbol_t *sym;
if (think_sym->table)
return new_symbol_expr (think_sym);
sym = symtab_lookup (current_symtab, "think");
if (sym && sym->sy_type == sy_var && sym->type
&& sym->type->type == ev_field
&& sym->type->t.fldptr.type->type == ev_func) {
think_sym->type = sym->type->t.fldptr.type;
} else {
think_sym->type = &type_func;
}
think_sym = function_symbol (think_sym, 0, 1);
make_function (think_sym, 0, current_symtab->space, current_storage);
return new_symbol_expr (think_sym);
}
expr_t *
cast_expr (type_t *dstType, expr_t *e)
{
expr_t *c;
type_t *srcType;
convert_name (e);
if (e->type == ex_error)
return e;
dstType = (type_t *) unalias_type (dstType); //FIXME cast
srcType = get_type (e);
if (dstType == srcType)
return e;
if ((dstType == type_default && is_enum (srcType))
|| (is_enum (dstType) && srcType == type_default))
return e;
if ((is_ptr (dstType) && is_string (srcType))
|| (is_string (dstType) && is_ptr (srcType))) {
c = new_alias_expr (dstType, e);
return c;
}
if (!(is_ptr (dstType) && (is_ptr (srcType) || is_integral (srcType)
|| is_array (srcType)))
&& !(is_integral (dstType) && is_ptr (srcType))
&& !(is_func (dstType) && is_func (srcType))
&& !(is_scalar (dstType) && is_scalar (srcType))) {
return cast_error (e, srcType, dstType);
}
if (is_array (srcType)) {
return address_expr (e, 0, dstType->t.fldptr.type);
}
if (is_constant (e) && is_scalar (dstType) && is_scalar (srcType)) {
ex_value_t *val = 0;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const) {
val = e->e.symbol->s.value;
} else if (e->type == ex_symbol
&& e->e.symbol->sy_type == sy_var) {
// initialized global def treated as a constant
// from the tests above, the def is known to be constant
// and of one of the three storable scalar types
def_t *def = e->e.symbol->s.def;
if (is_float (def->type)) {
val = new_float_val (D_FLOAT (def));
} else if (is_double (def->type)) {
val = new_double_val (D_DOUBLE (def));
} else if (is_integral (def->type)) {
val = new_int_val (D_INT (def));
}
} else if (e->type == ex_value) {
val = e->e.value;
} else if (e->type == ex_nil) {
convert_nil (e, dstType);
return e;
}
if (!val)
internal_error (e, "unexpected constant expression type");
e->e.value = convert_value (val, dstType);
e->type = ex_value;
c = e;
} else if (is_integral (dstType) && is_integral (srcType)) {
c = new_alias_expr (dstType, e);
} else if (is_scalar (dstType) && is_scalar (srcType)) {
c = new_unary_expr ('C', e);
c->e.expr.type = dstType;
} else if (e->type == ex_uexpr && e->e.expr.op == '.') {
e->e.expr.type = dstType;
c = e;
} else {
c = new_alias_expr (dstType, e);
}
return c;
}
expr_t *
encode_expr (type_t *type)
{
dstring_t *encoding = dstring_newstr ();
expr_t *e;
encode_type (encoding, type);
e = new_string_expr (encoding->str);
free (encoding);
return e;
}
expr_t *
sizeof_expr (expr_t *expr, struct type_s *type)
{
if (!((!expr) ^ (!type)))
internal_error (0, 0);
if (!type)
type = get_type (expr);
if (type) {
expr = new_int_expr (type_size (type));
}
return expr;
}
expr_t *
reverse_expr_list (expr_t *e)
{
expr_t *r = 0;
while (e) {
expr_t *t = e->next;
e->next = r;
r = e;
e = t;
}
return r;
}