quakeforge/tools/qfcc/source/expr.c
Bill Currie b18a744288 Use offset alias expressions
They are not quite working yet as the operand generator does not use the
offset yet.
2019-06-10 23:55:16 +09:00

2776 lines
65 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
expr.c
expression construction and manipulations
Copyright (C) 2001 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2001/06/15
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "QF/alloc.h"
#include "QF/dstring.h"
#include "QF/mathlib.h"
#include "QF/sys.h"
#include "QF/va.h"
#include "qfcc.h"
#include "class.h"
#include "def.h"
#include "defspace.h"
#include "diagnostic.h"
#include "emit.h"
#include "expr.h"
#include "function.h"
#include "idstuff.h"
#include "method.h"
#include "options.h"
#include "reloc.h"
#include "shared.h"
#include "strpool.h"
#include "struct.h"
#include "symtab.h"
#include "type.h"
#include "value.h"
#include "qc-parse.h"
static expr_t *exprs_freelist;
void
convert_name (expr_t *e)
{
symbol_t *sym;
expr_t *new;
if (e->type != ex_symbol)
return;
sym = e->e.symbol;
if (!strcmp (sym->name, "__PRETTY_FUNCTION__")
&& current_func) {
new = new_string_expr (current_func->name);
goto convert;
}
if (!strcmp (sym->name, "__FUNCTION__")
&& current_func) {
new = new_string_expr (current_func->def->name);
goto convert;
}
if (!strcmp (sym->name, "__LINE__")
&& current_func) {
new = new_integer_expr (e->line);
goto convert;
}
if (!strcmp (sym->name, "__INFINITY__")
&& current_func) {
new = new_float_expr (INFINITY);
goto convert;
}
if (!strcmp (sym->name, "__FILE__")
&& current_func) {
new = new_string_expr (GETSTR (e->file));
goto convert;
}
if (!sym->table) {
error (e, "%s undefined", sym->name);
sym->type = type_default;
//FIXME need a def
return;
}
if (sym->sy_type == sy_expr) {
new = copy_expr (sym->s.expr);
goto convert;
}
if (sym->sy_type == sy_type)
internal_error (e, "unexpected typedef");
// var, const and func shouldn't need extra handling
return;
convert:
e->type = new->type;
e->e = new->e;
}
expr_t *
convert_vector (expr_t *e)
{
float val[4];
if (e->type != ex_vector)
return e;
if (e->e.vector.type == &type_vector) {
// guaranteed to have three elements
expr_t *x = e->e.vector.list;
expr_t *y = x->next;
expr_t *z = y->next;
x = fold_constants (cast_expr (&type_float, x));
y = fold_constants (cast_expr (&type_float, y));
z = fold_constants (cast_expr (&type_float, z));
if (is_constant (x) && is_constant (y) && is_constant (z)) {
val[0] = expr_float(x);
val[1] = expr_float(y);
val[2] = expr_float(z);
return new_vector_expr (val);
}
// at least one of x, y, z is not constant, so rebuild the
// list incase any of them are new expressions
z->next = 0;
y->next = z;
x->next = y;
e->e.vector.list = x;
return e;
}
if (e->e.vector.type == &type_quaternion) {
// guaranteed to have two or four elements
if (e->e.vector.list->next->next) {
// four vals: x, y, z, w
expr_t *x = e->e.vector.list;
expr_t *y = x->next;
expr_t *z = y->next;
expr_t *w = z->next;
x = fold_constants (cast_expr (&type_float, x));
y = fold_constants (cast_expr (&type_float, y));
z = fold_constants (cast_expr (&type_float, z));
w = fold_constants (cast_expr (&type_float, w));
if (is_constant (x) && is_constant (y) && is_constant (z)
&& is_constant (w)) {
val[0] = expr_float(x);
val[1] = expr_float(y);
val[2] = expr_float(z);
val[3] = expr_float(w);
return new_quaternion_expr (val);
}
// at least one of x, y, z, w is not constant, so rebuild the
// list incase any of them are new expressions
w->next = 0;
z->next = w;
y->next = z;
x->next = y;
e->e.vector.list = x;
return e;
} else {
// v, s
expr_t *v = e->e.vector.list;
expr_t *s = v->next;
v = convert_vector (v);
s = fold_constants (cast_expr (&type_float, s));
if (is_constant (v) && is_constant (s)) {
memcpy (val, expr_vector (v), 3 * sizeof (float));
val[3] = expr_float (s);
return new_quaternion_expr (val);
}
// Either v or s is not constant, so can't convert to a quaternion
// constant.
// Rebuild the list in case v or s is a new expression
// the list will always be v, s
s->next = 0;
v->next = s;
e->e.vector.list = v;
return e;
}
}
internal_error (e, "bogus vector expression");
}
type_t *
get_type (expr_t *e)
{
convert_name (e);
switch (e->type) {
case ex_labelref:
return &type_void;
case ex_label:
case ex_error:
return 0; // something went very wrong
case ex_bool:
if (options.code.progsversion == PROG_ID_VERSION)
return &type_float;
return &type_integer;
case ex_nil:
case ex_state:
return &type_void;
case ex_block:
if (e->e.block.result)
return get_type (e->e.block.result);
return &type_void;
case ex_expr:
case ex_uexpr:
return e->e.expr.type;
case ex_symbol:
return e->e.symbol->type;
case ex_temp:
return e->e.temp.type;
case ex_value:
return e->e.value->type;
case ex_vector:
return e->e.vector.type;
}
return 0;
}
etype_t
extract_type (expr_t *e)
{
type_t *type = get_type (e);
if (type)
return type->type;
return ev_type_count;
}
expr_t *
type_mismatch (expr_t *e1, expr_t *e2, int op)
{
dstring_t *t1 = dstring_newstr ();
dstring_t *t2 = dstring_newstr ();
print_type_str (t1, get_type (e1));
print_type_str (t2, get_type (e2));
e1 = error (e1, "type mismatch: %s %s %s",
t1->str, get_op_string (op), t2->str);
dstring_delete (t1);
dstring_delete (t2);
return e1;
}
expr_t *
param_mismatch (expr_t *e, int param, const char *fn, type_t *t1, type_t *t2)
{
dstring_t *s1 = dstring_newstr ();
dstring_t *s2 = dstring_newstr ();
print_type_str (s1, t1);
print_type_str (s2, t2);
e = error (e, "type mismatch for parameter %d of %s: expected %s, got %s",
param, fn, s1->str, s2->str);
dstring_delete (s1);
dstring_delete (s2);
return e;
}
expr_t *
cast_error (expr_t *e, type_t *t1, type_t *t2)
{
dstring_t *s1 = dstring_newstr ();
dstring_t *s2 = dstring_newstr ();
print_type_str (s1, t1);
print_type_str (s2, t2);
e = error (e, "can not cast from %s to %s", s1->str, s2->str);
dstring_delete (s1);
dstring_delete (s2);
return e;
}
expr_t *
test_error (expr_t *e, type_t *t)
{
dstring_t *s = dstring_newstr ();
print_type_str (s, t);
e = error (e, "%s cannot be tested", s->str);
dstring_delete (s);
return e;
}
expr_t *
new_expr (void)
{
expr_t *e;
ALLOC (16384, expr_t, exprs, e);
e->line = pr.source_line;
e->file = pr.source_file;
return e;
}
expr_t *
copy_expr (expr_t *e)
{
expr_t *n;
expr_t *t;
if (!e)
return 0;
switch (e->type) {
case ex_error:
case ex_symbol:
case ex_nil:
case ex_value:
// nothing to do here
n = new_expr ();
*n = *e;
n->line = pr.source_line;
n->file = pr.source_file;
return n;
case ex_state:
return new_state_expr (copy_expr (e->e.state.frame),
copy_expr (e->e.state.think),
copy_expr (e->e.state.step));
case ex_bool:
n = new_expr ();
*n = *e;
n->line = pr.source_line;
n->file = pr.source_file;
if (e->e.bool.true_list) {
int count = e->e.bool.true_list->size;
size_t size = (size_t)&((ex_list_t *) 0)->e[count];
n->e.bool.true_list = malloc (size);
while (count--)
n->e.bool.true_list->e[count] =
copy_expr (e->e.bool.true_list->e[count]);
}
if (e->e.bool.false_list) {
int count = e->e.bool.false_list->size;
size_t size = (size_t)&((ex_list_t *) 0)->e[count];
n->e.bool.false_list = malloc (size);
while (count--)
n->e.bool.false_list->e[count] =
copy_expr (e->e.bool.false_list->e[count]);
}
n->e.bool.e = copy_expr (e->e.bool.e);
return n;
case ex_label:
/// Create a fresh label
return new_label_expr ();
case ex_labelref:
return new_label_ref (e->e.labelref.label);
case ex_block:
n = new_expr ();
*n = *e;
n->line = pr.source_line;
n->file = pr.source_file;
n->e.block.head = 0;
n->e.block.tail = &n->e.block.head;
n->e.block.result = 0;
for (t = e->e.block.head; t; t = t->next) {
if (t == e->e.block.result) {
n->e.block.result = copy_expr (t);
append_expr (n, n->e.block.result);
} else {
append_expr (n, copy_expr (t));
}
}
if (e->e.block.result && !n->e.block.result)
internal_error (e, "bogus block result?");
break;
case ex_expr:
n = new_expr ();
*n = *e;
n->line = pr.source_line;
n->file = pr.source_file;
n->e.expr.e1 = copy_expr (e->e.expr.e1);
n->e.expr.e2 = copy_expr (e->e.expr.e2);
return n;
case ex_uexpr:
n = new_expr ();
*n = *e;
n->line = pr.source_line;
n->file = pr.source_file;
n->e.expr.e1 = copy_expr (e->e.expr.e1);
return n;
case ex_temp:
n = new_expr ();
*n = *e;
n->line = pr.source_line;
n->file = pr.source_file;
return n;
case ex_vector:
n = new_expr ();
n->e.vector.type = e->e.vector.type;
n->e.vector.list = copy_expr (e->e.vector.list);
n = n->e.vector.list;
t = e->e.vector.list;
while (t->next) {
n->next = copy_expr (t->next);
n = n->next;
t = t->next;
}
return n;
}
internal_error (e, "invalid expression");
}
const char *
new_label_name (void)
{
static int label = 0;
int lnum = ++label;
const char *fname = current_func->sym->name;
char *lname;
lname = nva ("$%s_%d", fname, lnum);
SYS_CHECKMEM (lname);
return lname;
}
static expr_t *
new_error_expr (void)
{
expr_t *e = new_expr ();
e->type = ex_error;
return e;
}
expr_t *
new_state_expr (expr_t *frame, expr_t *think, expr_t *step)
{
expr_t *s = new_expr ();
s->type = ex_state;
s->e.state.frame = frame;
s->e.state.think = think;
s->e.state.step = step;
return s;
}
expr_t *
new_bool_expr (ex_list_t *true_list, ex_list_t *false_list, expr_t *e)
{
expr_t *b = new_expr ();
b->type = ex_bool;
b->e.bool.true_list = true_list;
b->e.bool.false_list = false_list;
b->e.bool.e = e;
return b;
}
expr_t *
new_label_expr (void)
{
expr_t *l = new_expr ();
l->type = ex_label;
l->e.label.name = new_label_name ();
return l;
}
expr_t *
new_label_ref (ex_label_t *label)
{
expr_t *l = new_expr ();
l->type = ex_labelref;
l->e.labelref.label = label;
label->used++;
return l;
}
expr_t *
new_block_expr (void)
{
expr_t *b = new_expr ();
b->type = ex_block;
b->e.block.head = 0;
b->e.block.tail = &b->e.block.head;
return b;
}
expr_t *
new_binary_expr (int op, expr_t *e1, expr_t *e2)
{
expr_t *e = new_expr ();
if (e1->type == ex_error)
return e1;
if (e2 && e2->type == ex_error)
return e2;
e->type = ex_expr;
e->e.expr.op = op;
e->e.expr.e1 = e1;
e->e.expr.e2 = e2;
return e;
}
expr_t *
build_block_expr (expr_t *expr_list)
{
expr_t *b = new_block_expr ();
while (expr_list) {
expr_t *e = expr_list;
expr_list = e->next;
e->next = 0;
append_expr (b, e);
}
return b;
}
expr_t *
new_unary_expr (int op, expr_t *e1)
{
expr_t *e = new_expr ();
if (e1 && e1->type == ex_error)
return e1;
e->type = ex_uexpr;
e->e.expr.op = op;
e->e.expr.e1 = e1;
return e;
}
expr_t *
new_symbol_expr (symbol_t *symbol)
{
expr_t *e = new_expr ();
e->type = ex_symbol;
e->e.symbol = symbol;
return e;
}
expr_t *
new_temp_def_expr (type_t *type)
{
expr_t *e = new_expr ();
e->type = ex_temp;
e->e.temp.type = type;
return e;
}
expr_t *
new_nil_expr (void)
{
expr_t *e = new_expr ();
e->type = ex_nil;
return e;
}
expr_t *
new_value_expr (ex_value_t *value)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = value;
return e;
}
expr_t *
new_name_expr (const char *name)
{
expr_t *e = new_expr ();
symbol_t *sym;
sym = symtab_lookup (current_symtab, name);
if (!sym)
sym = new_symbol (name);
e->type = ex_symbol;
e->e.symbol = sym;
return e;
}
expr_t *
new_string_expr (const char *string_val)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_string_val (string_val);
return e;
}
expr_t *
new_float_expr (float float_val)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_float_val (float_val);
return e;
}
expr_t *
new_vector_expr (const float *vector_val)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_vector_val (vector_val);
return e;
}
expr_t *
new_vector_list (expr_t *e)
{
expr_t *t;
int count;
type_t *type = &type_vector;
expr_t *vec;
e = reverse_expr_list (e); // put the elements in the right order
for (t = e, count = 0; t; t = t->next)
count++;
switch (count) {
case 4:
type = &type_quaternion;
case 3:
// quaternion or vector. all expressions must be compatible with
// a float
for (t = e; t; t = t->next)
if (!type_assignable (&type_float, get_type (t)))
return error (t, "invalid type for vector element");
vec = new_expr ();
vec->type = ex_vector;
vec->e.vector.type = type;
vec->e.vector.list = e;
break;
case 2:
// quaternion. either float-ish, vector or vector, float-ish
if (type_assignable (&type_float, get_type (e))
&& type_assignable (&type_vector, get_type(e->next))) {
// float-ish, vector
// swap expressions
t = e;
e = e->next;
e->next = t;
t->next = 0;
} else if (type_assignable (&type_vector, get_type (e))
&& type_assignable (&type_float, get_type(e->next))) {
// vector, float-ish
// do nothing
} else {
return error (t, "invalid types for vector elements");
}
// v, s
vec = new_expr ();
vec->type = ex_vector;
vec->e.vector.type = &type_quaternion;
vec->e.vector.list = e;
break;
default:
return error (e, "invalid number of elements in vector exprssion");
}
return vec;
}
expr_t *
new_entity_expr (int entity_val)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_entity_val (entity_val);
return e;
}
expr_t *
new_field_expr (int field_val, type_t *type, def_t *def)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_field_val (field_val, type, def);
return e;
}
expr_t *
new_func_expr (int func_val, type_t *type)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_func_val (func_val, type);
return e;
}
expr_t *
new_pointer_expr (int val, type_t *type, def_t *def)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_pointer_val (val, type, def);
return e;
}
expr_t *
new_quaternion_expr (const float *quaternion_val)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_quaternion_val (quaternion_val);
return e;
}
expr_t *
new_integer_expr (int integer_val)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_integer_val (integer_val);
return e;
}
expr_t *
new_uinteger_expr (unsigned uinteger_val)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_uinteger_val (uinteger_val);
return e;
}
expr_t *
new_short_expr (short short_val)
{
expr_t *e = new_expr ();
e->type = ex_value;
e->e.value = new_short_val (short_val);
return e;
}
int
is_constant (expr_t *e)
{
if (e->type == ex_nil || e->type == ex_value || e->type == ex_labelref
|| (e->type == ex_symbol && e->e.symbol->sy_type == sy_const)
|| (e->type == ex_symbol && e->e.symbol->sy_type == sy_var
&& e->e.symbol->s.def->constant))
return 1;
return 0;
}
expr_t *
constant_expr (expr_t *e)
{
expr_t *new;
symbol_t *sym;
ex_value_t *value;
if (!is_constant (e))
return e;
if (e->type == ex_nil || e->type == ex_value || e->type == ex_labelref)
return e;
if (e->type != ex_symbol)
return e;
sym = e->e.symbol;
if (sym->sy_type == sy_const) {
value = sym->s.value;
} else if (sym->sy_type == sy_var && sym->s.def->constant) {
//FIXME pointers and fields
internal_error (e, "what to do here?");
//memset (&value, 0, sizeof (value));
//memcpy (&value.v, &D_INT (sym->s.def),
//type_size (sym->s.def->type) * sizeof (pr_type_t));
} else {
return e;
}
new = new_expr ();
new->type = ex_value;
new->line = e->line;
new->file = e->file;
new->e.value = value;
return new;
}
int
is_string_val (expr_t *e)
{
if (e->type == ex_nil)
return 1;
if (e->type == ex_value && e->e.value->lltype == ev_string)
return 1;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_string)
return 1;
return 0;
}
const char *
expr_string (expr_t *e)
{
if (e->type == ex_nil)
return 0;
if (e->type == ex_value && e->e.value->lltype == ev_string)
return e->e.value->v.string_val;
internal_error (e, "not a string constant");
}
int
is_float_val (expr_t *e)
{
if (e->type == ex_nil)
return 1;
if (e->type == ex_value && e->e.value->lltype == ev_float)
return 1;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_float)
return 1;
return 0;
}
float
expr_float (expr_t *e)
{
if (e->type == ex_nil)
return 0;
if (e->type == ex_value && e->e.value->lltype == ev_float)
return e->e.value->v.float_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_float)
return e->e.symbol->s.value->v.float_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var
&& e->e.symbol->s.def->constant
&& is_float (e->e.symbol->s.def->type))
return D_FLOAT (e->e.symbol->s.def);
internal_error (e, "not a float constant");
}
int
is_vector_val (expr_t *e)
{
if (e->type == ex_nil)
return 1;
if (e->type == ex_value && e->e.value->lltype == ev_vector)
return 1;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_vector)
return 1;
return 0;
}
const float *
expr_vector (expr_t *e)
{
if (e->type == ex_nil)
return vec3_origin;
if (e->type == ex_value && e->e.value->lltype == ev_vector)
return e->e.value->v.vector_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_vector)
return e->e.symbol->s.value->v.vector_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var
&& e->e.symbol->s.def->constant
&& e->e.symbol->s.def->type->type == ev_vector)
return D_VECTOR (e->e.symbol->s.def);
internal_error (e, "not a vector constant");
}
int
is_quaternion_val (expr_t *e)
{
if (e->type == ex_nil)
return 1;
if (e->type == ex_value && e->e.value->lltype == ev_quat)
return 1;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_quat)
return 1;
return 0;
}
const float *
expr_quaternion (expr_t *e)
{
if (e->type == ex_nil)
return quat_origin;
if (e->type == ex_value && e->e.value->lltype == ev_quat)
return e->e.value->v.quaternion_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_quat)
return e->e.symbol->s.value->v.quaternion_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var
&& e->e.symbol->s.def->constant
&& e->e.symbol->s.def->type->type == ev_quat)
return D_QUAT (e->e.symbol->s.def);
internal_error (e, "not a quaternion constant");
}
int
is_integer_val (expr_t *e)
{
if (e->type == ex_nil)
return 1;
if (e->type == ex_value && e->e.value->lltype == ev_integer)
return 1;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& (e->e.symbol->type->type == ev_integer
|| is_enum (e->e.symbol->type)))
return 1;
return 0;
}
int
expr_integer (expr_t *e)
{
if (e->type == ex_nil)
return 0;
if (e->type == ex_value && e->e.value->lltype == ev_integer)
return e->e.value->v.integer_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& (e->e.symbol->type->type == ev_integer
|| is_enum (e->e.symbol->type)))
return e->e.symbol->s.value->v.integer_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var
&& e->e.symbol->s.def->constant
&& is_integral (e->e.symbol->s.def->type))
return D_INT (e->e.symbol->s.def);
internal_error (e, "not an integer constant");
}
unsigned
expr_uinteger (expr_t *e)
{
if (e->type == ex_nil)
return 0;
if (e->type == ex_value && e->e.value->lltype == ev_uinteger)
return e->e.value->v.uinteger_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_uinteger)
return e->e.symbol->s.value->v.uinteger_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_var
&& e->e.symbol->s.def->constant
&& is_integral (e->e.symbol->s.def->type))
return D_INT (e->e.symbol->s.def);
internal_error (e, "not an unsigned constant");
}
int
is_short_val (expr_t *e)
{
if (e->type == ex_nil)
return 1;
if (e->type == ex_value && e->e.value->lltype == ev_short)
return 1;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_short)
return 1;
return 0;
}
short
expr_short (expr_t *e)
{
if (e->type == ex_nil)
return 0;
if (e->type == ex_value && e->e.value->lltype == ev_short)
return e->e.value->v.short_val;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const
&& e->e.symbol->type->type == ev_short)
return e->e.symbol->s.value->v.short_val;
internal_error (e, "not a short constant");
}
expr_t *
new_self_expr (void)
{
symbol_t *sym;
sym = make_symbol (".self", &type_entity, pr.near_data, sc_extern);
if (!sym->table)
symtab_addsymbol (pr.symtab, sym);
return new_symbol_expr (sym);
}
expr_t *
new_this_expr (void)
{
symbol_t *sym;
sym = make_symbol (".this", field_type (&type_id), pr.near_data, sc_extern);
if (!sym->table)
symtab_addsymbol (pr.symtab, sym);
return new_symbol_expr (sym);
}
expr_t *
new_alias_expr (type_t *type, expr_t *expr)
{
expr_t *alias;
if (expr->type == ex_value)
return new_value_expr (alias_value (expr->e.value, type));
alias = new_unary_expr ('A', expr);
alias->e.expr.type = type;
//if (expr->type == ex_uexpr && expr->e.expr.op == 'A')
// bug (alias, "aliasing an alias expression");
alias->file = expr->file;
alias->line = expr->line;
return alias;
}
expr_t *
new_offset_alias_expr (type_t *type, expr_t *expr, int offset)
{
expr_t *alias;
alias = new_binary_expr ('A', expr, new_integer_expr (offset));
alias->e.expr.type = type;
alias->file = expr->file;
alias->line = expr->line;
return alias;
}
static expr_t *
param_expr (const char *name, type_t *type)
{
symbol_t *sym;
expr_t *sym_expr;
sym = make_symbol (name, &type_param, pr.symtab->space, sc_extern);
if (!sym->table)
symtab_addsymbol (pr.symtab, sym);
sym_expr = new_symbol_expr (sym);
return new_alias_expr (type, sym_expr);
}
expr_t *
new_ret_expr (type_t *type)
{
return param_expr (".return", type);
}
expr_t *
new_param_expr (type_t *type, int num)
{
return param_expr (va (".param_%d", num), type);
}
expr_t *
new_move_expr (expr_t *e1, expr_t *e2, type_t *type, int indirect)
{
expr_t *e = new_binary_expr (indirect ? 'M' : 'm', e1, e2);
e->e.expr.type = type;
return e;
}
expr_t *
append_expr (expr_t *block, expr_t *e)
{
if (block->type != ex_block)
internal_error (block, "not a block expression");
if (!e || e->type == ex_error)
return block;
if (e->next)
internal_error (e, "append_expr: expr loop detected");
*block->e.block.tail = e;
block->e.block.tail = &e->next;
return block;
}
static symbol_t *
get_struct_field (type_t *t1, expr_t *e1, expr_t *e2)
{
symtab_t *strct = t1->t.symtab;
symbol_t *sym = e2->e.symbol;//FIXME need to check
symbol_t *field;
if (!strct) {
error (e1, "dereferencing pointer to incomplete type");
return 0;
}
field = symtab_lookup (strct, sym->name);
if (!field && t1 != &type_entity) {
error (e2, "'%s' has no member named '%s'", t1->name + 4, sym->name);
e1->type = ex_error;
}
return field;
}
expr_t *
field_expr (expr_t *e1, expr_t *e2)
{
type_t *t1, *t2;
expr_t *e;
if (e1->type == ex_error)
return e1;
t1 = get_type (e1);
if (t1->type == ev_entity) {
symbol_t *field = 0;
if (e2->type == ex_symbol)
field = get_struct_field (&type_entity, e1, e2);
if (field) {
e2 = new_field_expr (0, field->type, field->s.def);
e = new_binary_expr ('.', e1, e2);
e->e.expr.type = field->type;
return e;
} else {
t2 = get_type (e2);
if (e2->type == ex_error)
return e2;
if (t2->type == ev_field) {
e = new_binary_expr ('.', e1, e2);
e->e.expr.type = t2->t.fldptr.type;
return e;
}
}
} else if (t1->type == ev_pointer) {
if (is_struct (t1->t.fldptr.type)) {
symbol_t *field;
field = get_struct_field (t1->t.fldptr.type, e1, e2);
if (!field)
return e1;
e2->type = ex_value;
e2->e.value = new_short_val (field->s.offset);
e = new_binary_expr ('&', e1, e2);
e->e.expr.type = pointer_type (field->type);
return unary_expr ('.', e);
} else if (obj_is_class (t1->t.fldptr.type)) {
class_t *class = t1->t.fldptr.type->t.class;
symbol_t *sym = e2->e.symbol;//FIXME need to check
symbol_t *ivar;
ivar = class_find_ivar (class, vis_protected, sym->name);
if (!ivar)
return new_error_expr ();
e2->type = ex_value;
e2->e.value = new_short_val (ivar->s.offset);
e = new_binary_expr ('&', e1, e2);
e->e.expr.type = pointer_type (ivar->type);
return unary_expr ('.', e);
}
} else if (t1->type == ev_vector || t1->type == ev_quat
|| is_struct (t1)) {
symbol_t *field;
field = get_struct_field (t1, e1, e2);
if (!field)
return e1;
if (e1->type == ex_expr && e1->e.expr.op == '.'
&& get_type (e1->e.expr.e1) == &type_entity) {
// undo the . expression
e2 = e1->e.expr.e2;
e1 = e1->e.expr.e1;
// offset the field expresion
if (e2->type == ex_symbol) {
symbol_t *sym;
def_t *def;
sym = symtab_lookup (pr.entity_fields, e2->e.symbol->name);
if (!sym) {
internal_error (e2, "failed to find entity field %s",
e2->e.symbol->name);
}
def = sym->s.def;
e2 = new_field_expr (0, field->type, def);
} else if (e2->type != ex_value
|| e2->e.value->lltype != ev_field) {
internal_error (e2, "unexpected field exression");
}
e2->e.value = new_field_val (e2->e.value->v.pointer.val + field->s.offset, field->type, e2->e.value->v.pointer.def);
// create a new . expression
return field_expr (e1, e2);
} else {
if (e1->type == ex_uexpr && e1->e.expr.op == '.') {
e2->type = ex_value;
e2->e.value = new_short_val (field->s.offset);
e = address_expr (e1, e2, field->type);
return unary_expr ('.', e);
} else {
return new_offset_alias_expr (field->type, e1, field->s.offset);
}
}
} else if (obj_is_class (t1)) {
//Class instance variables aren't allowed and thus declaring one
//is treated as an error, so this is a follow-on error.
return error (e1, "class instance access");
}
return type_mismatch (e1, e2, '.');
}
expr_t *
test_expr (expr_t *e)
{
static float zero[4] = {0, 0, 0, 0};
expr_t *new = 0;
type_t *type;
if (e->type == ex_error)
return e;
type = get_type (e);
if (e->type == ex_error)
return e;
switch (type->type) {
case ev_type_count:
internal_error (e, 0);
case ev_void:
if (options.traditional) {
if (options.warnings.traditional)
warning (e, "void has no value");
return e;
}
return error (e, "void has no value");
case ev_string:
if (!options.code.ifstring)
return new_alias_expr (type_default, e);
new = new_string_expr (0);
break;
case ev_uinteger:
case ev_integer:
case ev_short:
if (type_default != &type_integer)
return new_alias_expr (type_default, e);
return e;
case ev_float:
if (options.code.fast_float
|| options.code.progsversion == PROG_ID_VERSION) {
if (type_default != &type_float)
return new_alias_expr (type_default, e);
return e;
}
new = new_float_expr (0);
break;
case ev_vector:
new = new_vector_expr (zero);
break;
case ev_entity:
return new_alias_expr (type_default, e);
case ev_field:
return new_alias_expr (type_default, e);
case ev_func:
return new_alias_expr (type_default, e);
case ev_pointer:
return new_alias_expr (type_default, e);
case ev_quat:
new = new_quaternion_expr (zero);
break;
case ev_invalid:
if (is_enum (type)) {
new = new_nil_expr ();
break;
}
return test_error (e, get_type (e));
}
new->line = e->line;
new->file = e->file;
new = binary_expr (NE, e, new);
new->line = e->line;
new->file = e->file;
return new;
}
void
backpatch (ex_list_t *list, expr_t *label)
{
int i;
expr_t *e;
if (!list)
return;
if (!label || label->type != ex_label)
internal_error (label, "not a label");
for (i = 0; i < list->size; i++) {
e = list->e[i];
if (e->type == ex_uexpr && e->e.expr.op == 'g')
e->e.expr.e1 = label;
else if (e->type == ex_expr && (e->e.expr.op == 'i'
|| e->e.expr.op == 'n'))
e->e.expr.e2 = label;
else {
internal_error (e, 0);
}
label->e.label.used++;
}
}
static ex_list_t *
merge (ex_list_t *l1, ex_list_t *l2)
{
ex_list_t *m;
if (!l1 && !l2)
internal_error (0, 0);
if (!l2)
return l1;
if (!l1)
return l2;
m = malloc ((size_t)&((ex_list_t *)0)->e[l1->size + l2->size]);
m->size = l1->size + l2->size;
memcpy (m->e, l1->e, l1->size * sizeof (expr_t *));
memcpy (m->e + l1->size, l2->e, l2->size * sizeof (expr_t *));
return m;
}
static ex_list_t *
make_list (expr_t *e)
{
ex_list_t *m;
m = malloc ((size_t)&((ex_list_t *) 0)->e[1]);
m->size = 1;
m->e[0] = e;
return m;
}
expr_t *
convert_bool (expr_t *e, int block)
{
expr_t *b;
if (e->type == ex_expr && (e->e.expr.op == '=' || e->e.expr.op == PAS)) {
expr_t *src;
if (!e->paren && options.warnings.precedence)
warning (e, "suggest parentheses around assignment "
"used as truth value");
src = e->e.expr.e2;
if (src->type == ex_block) {
src = new_temp_def_expr (get_type (src));
e = new_binary_expr (e->e.expr.op, e->e.expr.e1,
assign_expr (src, e->e.expr.e2));
}
b = convert_bool (src, 1);
if (b->type == ex_error)
return b;
// insert the assignment into the bool's block
e->next = b->e.bool.e->e.block.head;
b->e.bool.e->e.block.head = e;
if (b->e.bool.e->e.block.tail == &b->e.bool.e->e.block.head) {
// shouldn't happen, but just in case
b->e.bool.e->e.block.tail = &e->next;
}
return b;
}
if (e->type == ex_uexpr && e->e.expr.op == '!'
&& get_type (e->e.expr.e1) != &type_string) {
e = convert_bool (e->e.expr.e1, 0);
if (e->type == ex_error)
return e;
e = unary_expr ('!', e);
}
if (e->type != ex_bool) {
e = test_expr (e);
if (e->type == ex_error)
return e;
if (is_integer_val (e)) {
b = goto_expr (0);
if (expr_integer (e))
e = new_bool_expr (make_list (b), 0, b);
else
e = new_bool_expr (0, make_list (b), b);
} else {
b = new_block_expr ();
append_expr (b, branch_expr ('i', e, 0));
append_expr (b, goto_expr (0));
e = new_bool_expr (make_list (b->e.block.head),
make_list (b->e.block.head->next), b);
}
}
if (block && e->e.bool.e->type != ex_block) {
expr_t *block = new_block_expr ();
append_expr (block, e->e.bool.e);
e->e.bool.e = block;
}
return e;
}
expr_t *
convert_from_bool (expr_t *e, type_t *type)
{
expr_t *zero;
expr_t *one;
expr_t *cond;
if (type == &type_float) {
one = new_float_expr (1);
zero = new_float_expr (0);
} else if (type == &type_integer) {
one = new_integer_expr (1);
zero = new_integer_expr (0);
} else if (is_enum (type) && enum_as_bool (type, &zero, &one)) {
// don't need to do anything
} else if (type == &type_uinteger) {
one = new_uinteger_expr (1);
zero = new_uinteger_expr (0);
} else {
return error (e, "can't convert from bool value");
}
cond = new_expr ();
*cond = *e;
cond->next = 0;
cond = conditional_expr (cond, one, zero);
e->type = cond->type;
e->e = cond->e;
return e;
}
expr_t *
bool_expr (int op, expr_t *label, expr_t *e1, expr_t *e2)
{
expr_t *block;
if (!options.code.short_circuit)
return binary_expr (op, e1, e2);
e1 = convert_bool (e1, 0);
if (e1->type == ex_error)
return e1;
e2 = convert_bool (e2, 0);
if (e2->type == ex_error)
return e2;
block = new_block_expr ();
append_expr (block, e1);
append_expr (block, label);
append_expr (block, e2);
switch (op) {
case OR:
backpatch (e1->e.bool.false_list, label);
return new_bool_expr (merge (e1->e.bool.true_list,
e2->e.bool.true_list),
e2->e.bool.false_list, block);
break;
case AND:
backpatch (e1->e.bool.true_list, label);
return new_bool_expr (e2->e.bool.true_list,
merge (e1->e.bool.false_list,
e2->e.bool.false_list), block);
break;
}
internal_error (e1, 0);
}
void
convert_int (expr_t *e)
{
float float_val = expr_integer (e);
e->type = ex_value;
e->e.value = new_float_val (float_val);
}
void
convert_short (expr_t *e)
{
float float_val = expr_short (e);
e->type = ex_value;
e->e.value = new_float_val (float_val);
}
void
convert_short_int (expr_t *e)
{
float integer_val = expr_short (e);
e->type = ex_value;
e->e.value = new_integer_val (integer_val);
}
void
convert_nil (expr_t *e, type_t *t)
{
e->type = ex_value;
e->e.value = new_nil_val (t);
}
int
is_compare (int op)
{
if (op == EQ || op == NE || op == LE || op == GE || op == LT || op == GT
|| op == '>' || op == '<')
return 1;
return 0;
}
int
is_math_op (int op)
{
if (op == '*' || op == '/' || op == '+' || op == '-')
return 1;
return 0;
}
int
is_logic (int op)
{
if (op == OR || op == AND)
return 1;
return 0;
}
int
has_function_call (expr_t *e)
{
switch (e->type) {
case ex_bool:
return has_function_call (e->e.bool.e);
case ex_block:
if (e->e.block.is_call)
return 1;
for (e = e->e.block.head; e; e = e->next)
if (has_function_call (e))
return 1;
return 0;
case ex_expr:
if (e->e.expr.op == 'c')
return 1;
return (has_function_call (e->e.expr.e1)
|| has_function_call (e->e.expr.e2));
case ex_uexpr:
if (e->e.expr.op != 'g')
return has_function_call (e->e.expr.e1);
default:
return 0;
}
}
expr_t *
asx_expr (int op, expr_t *e1, expr_t *e2)
{
if (e1->type == ex_error)
return e1;
else if (e2->type == ex_error)
return e2;
else {
expr_t *e = new_expr ();
*e = *e1;
e2->paren = 1;
return assign_expr (e, binary_expr (op, e1, e2));
}
}
expr_t *
unary_expr (int op, expr_t *e)
{
vec3_t v;
quat_t q;
const char *s;
convert_name (e);
if (e->type == ex_error)
return e;
switch (op) {
case '-':
if (!is_math (get_type (e)))
return error (e, "invalid type for unary -");
if (is_constant (e)) {
switch (extract_type (e)) {
case ev_string:
case ev_entity:
case ev_field:
case ev_func:
case ev_pointer:
internal_error (e, "type check failed!");
case ev_float:
return new_float_expr (-expr_float (e));
case ev_vector:
VectorNegate (expr_vector (e), v);
return new_vector_expr (v);
case ev_quat:
QuatNegate (expr_vector (e), q);
return new_vector_expr (q);
case ev_integer:
return new_integer_expr (-expr_integer (e));
case ev_uinteger:
return new_uinteger_expr (-expr_uinteger (e));
case ev_short:
return new_short_expr (-expr_short (e));
case ev_invalid:
case ev_type_count:
case ev_void:
break;
}
internal_error (e, "weird expression type");
}
switch (e->type) {
case ex_value: // should be handled above
case ex_error:
case ex_label:
case ex_labelref:
case ex_state:
internal_error (e, 0);
case ex_uexpr:
if (e->e.expr.op == '-')
return e->e.expr.e1;
case ex_block:
if (!e->e.block.result)
return error (e, "invalid type for unary -");
case ex_expr:
case ex_bool:
case ex_temp:
case ex_vector:
{
expr_t *n = new_unary_expr (op, e);
n->e.expr.type = e->e.expr.type;
return n;
}
case ex_symbol:
{
expr_t *n = new_unary_expr (op, e);
n->e.expr.type = e->e.symbol->type;
return n;
}
case ex_nil:
return error (e, "invalid type for unary -");
}
break;
case '!':
if (is_constant (e)) {
switch (extract_type (e)) {
case ev_entity:
case ev_field:
case ev_func:
case ev_pointer:
internal_error (e, 0);
case ev_string:
s = expr_string (e);
return new_integer_expr (!s || !s[0]);
case ev_float:
return new_integer_expr (!expr_float (e));
case ev_vector:
return new_integer_expr (!VectorIsZero (expr_vector (e)));
case ev_quat:
return new_integer_expr (!QuatIsZero (expr_quaternion (e)));
case ev_integer:
return new_integer_expr (!expr_integer (e));
case ev_uinteger:
return new_uinteger_expr (!expr_uinteger (e));
case ev_short:
return new_short_expr (!expr_short (e));
case ev_invalid:
case ev_type_count:
case ev_void:
break;
}
internal_error (e, "weird expression type");
}
switch (e->type) {
case ex_value: // should be handled above
case ex_error:
case ex_label:
case ex_labelref:
case ex_state:
internal_error (e, 0);
case ex_bool:
return new_bool_expr (e->e.bool.false_list,
e->e.bool.true_list, e);
case ex_block:
if (!e->e.block.result)
return error (e, "invalid type for unary !");
case ex_uexpr:
case ex_expr:
case ex_symbol:
case ex_temp:
case ex_vector:
{
expr_t *n = new_unary_expr (op, e);
if (options.code.progsversion > PROG_ID_VERSION)
n->e.expr.type = &type_integer;
else
n->e.expr.type = &type_float;
return n;
}
case ex_nil:
return error (e, "invalid type for unary !");
}
break;
case '~':
if (is_constant (e)) {
switch (extract_type (e)) {
case ev_string:
case ev_entity:
case ev_field:
case ev_func:
case ev_pointer:
case ev_vector:
return error (e, "invalid type for unary ~");
case ev_float:
return new_float_expr (~(int) expr_float (e));
case ev_quat:
QuatConj (expr_vector (e), q);
return new_vector_expr (q);
case ev_integer:
return new_integer_expr (~expr_integer (e));
case ev_uinteger:
return new_uinteger_expr (~expr_uinteger (e));
case ev_short:
return new_short_expr (~expr_short (e));
case ev_invalid:
case ev_type_count:
case ev_void:
break;
}
internal_error (e, "weird expression type");
}
switch (e->type) {
case ex_value: // should be handled above
case ex_error:
case ex_label:
case ex_labelref:
case ex_state:
internal_error (e, 0);
case ex_uexpr:
if (e->e.expr.op == '~')
return e->e.expr.e1;
goto bitnot_expr;
case ex_block:
if (!e->e.block.result)
return error (e, "invalid type for unary ~");
goto bitnot_expr;
case ex_expr:
case ex_bool:
case ex_symbol:
case ex_temp:
case ex_vector:
bitnot_expr:
if (options.code.progsversion == PROG_ID_VERSION) {
expr_t *n1 = new_integer_expr (-1);
return binary_expr ('-', n1, e);
} else {
expr_t *n = new_unary_expr (op, e);
type_t *t = get_type (e);
if (t != &type_integer && t != &type_float
&& t != &type_quaternion)
return error (e, "invalid type for unary ~");
n->e.expr.type = t;
return n;
}
case ex_nil:
return error (e, "invalid type for unary ~");
}
break;
case '.':
if (extract_type (e) != ev_pointer)
return error (e, "invalid type for unary .");
e = new_unary_expr ('.', e);
e->e.expr.type = get_type (e->e.expr.e1)->t.fldptr.type;
return e;
case '+':
if (!is_math (get_type (e)))
return error (e, "invalid type for unary +");
return e;
}
internal_error (e, 0);
}
expr_t *
build_function_call (expr_t *fexpr, type_t *ftype, expr_t *params)
{
expr_t *e;
int arg_count = 0, parm_count = 0;
int i;
expr_t *args = 0, **a = &args;
type_t *arg_types[MAX_PARMS];
expr_t *arg_exprs[MAX_PARMS][2];
int arg_expr_count = 0;
expr_t *call;
expr_t *err = 0;
for (e = params; e; e = e->next) {
if (e->type == ex_error)
return e;
arg_count++;
}
if (arg_count > MAX_PARMS) {
return error (fexpr, "more than %d parameters", MAX_PARMS);
}
if (ftype->t.func.num_params < -1) {
if (-arg_count > ftype->t.func.num_params + 1) {
if (!options.traditional)
return error (fexpr, "too few arguments");
if (options.warnings.traditional)
warning (fexpr, "too few arguments");
}
parm_count = -ftype->t.func.num_params - 1;
} else if (ftype->t.func.num_params >= 0) {
if (arg_count > ftype->t.func.num_params) {
return error (fexpr, "too many arguments");
} else if (arg_count < ftype->t.func.num_params) {
if (!options.traditional)
return error (fexpr, "too few arguments");
if (options.warnings.traditional)
warning (fexpr, "too few arguments");
}
parm_count = ftype->t.func.num_params;
}
for (i = arg_count - 1, e = params; i >= 0; i--, e = e->next) {
type_t *t = get_type (e);
if (!type_size (t))
err = error (e, "type of formal parameter %d is incomplete",
i + 1);
if (type_size (t) > type_size (&type_param))
err = error (e, "formal parameter %d is too large to be passed by"
" value", i + 1);
if (ftype->t.func.param_types[i] == &type_float
&& is_integer_val (e)) {
convert_int (e);
t = &type_float;
}
if (i < parm_count) {
if (e->type == ex_nil)
convert_nil (e, t = ftype->t.func.param_types[i]);
if (e->type == ex_bool)
convert_from_bool (e, ftype->t.func.param_types[i]);
if (e->type == ex_error)
return e;
if (!type_assignable (ftype->t.func.param_types[i], t)) {
err = param_mismatch (e, i + 1, fexpr->e.symbol->name,
ftype->t.func.param_types[i], t);
}
t = ftype->t.func.param_types[i];
} else {
if (e->type == ex_nil)
convert_nil (e, t = type_nil);
if (e->type == ex_bool)
convert_from_bool (e, get_type (e));
if (is_integer_val (e)
&& options.code.progsversion == PROG_ID_VERSION)
convert_int (e);
if (is_integer_val (e) && options.warnings.vararg_integer)
warning (e, "passing integer constant into ... function");
}
arg_types[arg_count - 1 - i] = t;
}
if (err)
return err;
call = new_block_expr ();
call->e.block.is_call = 1;
for (e = params, i = 0; e; e = e->next, i++) {
if (has_function_call (e)) {
*a = new_temp_def_expr (arg_types[i]);
arg_exprs[arg_expr_count][0] = cast_expr (arg_types[i], convert_vector (e));
arg_exprs[arg_expr_count][1] = *a;
arg_expr_count++;
} else {
*a = cast_expr (arg_types[i], convert_vector (e));
}
a = &(*a)->next;
}
for (i = 0; i < arg_expr_count - 1; i++) {
append_expr (call, assign_expr (arg_exprs[i][1], arg_exprs[i][0]));
}
if (arg_expr_count) {
e = assign_expr (arg_exprs[arg_expr_count - 1][1],
arg_exprs[arg_expr_count - 1][0]);
append_expr (call, e);
}
e = new_binary_expr ('c', fexpr, args);
e->e.expr.type = ftype->t.func.type;
append_expr (call, e);
if (ftype->t.func.type != &type_void) {
call->e.block.result = new_ret_expr (ftype->t.func.type);
} else if (options.traditional) {
call->e.block.result = new_ret_expr (&type_float);
}
return call;
}
expr_t *
function_expr (expr_t *fexpr, expr_t *params)
{
type_t *ftype;
find_function (fexpr, params);
ftype = get_type (fexpr);
if (fexpr->type == ex_error)
return fexpr;
if (ftype->type != ev_func) {
if (fexpr->type == ex_symbol)
return error (fexpr, "Called object \"%s\" is not a function",
fexpr->e.symbol->name);
else
return error (fexpr, "Called object is not a function");
}
if (fexpr->type == ex_symbol && params && is_string_val (params)) {
// FIXME eww, I hate this, but it's needed :(
// FIXME make a qc hook? :)
if (strncmp (fexpr->e.symbol->name, "precache_sound", 14) == 0)
PrecacheSound (expr_string (params), fexpr->e.symbol->name[14]);
else if (strncmp (fexpr->e.symbol->name, "precache_model", 14) == 0)
PrecacheModel (expr_string (params), fexpr->e.symbol->name[14]);
else if (strncmp (fexpr->e.symbol->name, "precache_file", 13) == 0)
PrecacheFile (expr_string (params), fexpr->e.symbol->name[13]);
}
return build_function_call (fexpr, ftype, params);
}
expr_t *
branch_expr (int op, expr_t *test, expr_t *label)
{
if (label && label->type != ex_label)
internal_error (label, "not a label");
if (label)
label->e.label.used++;
return new_binary_expr (op, test, label);
}
expr_t *
goto_expr (expr_t *label)
{
if (label && label->type != ex_label)
internal_error (label, "not a label");
if (label)
label->e.label.used++;
return new_unary_expr ('g', label);
}
expr_t *
return_expr (function_t *f, expr_t *e)
{
type_t *t;
if (!e) {
if (f->sym->type->t.func.type != &type_void) {
if (options.traditional) {
if (options.warnings.traditional)
warning (e,
"return from non-void function without a value");
// force a nil return value in case qf code is being generated
e = new_nil_expr ();
} else {
e = error (e, "return from non-void function without a value");
return e;
}
}
// the traditional check above may have set e
if (!e) {
return new_unary_expr ('r', 0);
}
}
t = get_type (e);
if (e->type == ex_error)
return e;
if (f->sym->type->t.func.type == &type_void) {
if (!options.traditional)
return error (e, "returning a value for a void function");
if (options.warnings.traditional)
warning (e, "returning a value for a void function");
}
if (e->type == ex_bool)
e = convert_from_bool (e, f->sym->type->t.func.type);
if (f->sym->type->t.func.type == &type_float && is_integer_val (e)) {
convert_int (e);
t = &type_float;
}
if (t == &type_void) {
if (e->type == ex_nil) {
t = f->sym->type->t.func.type;
convert_nil (e, t);
if (e->type == ex_nil)
return error (e, "invalid return type for NIL");
} else {
if (!options.traditional)
return error (e, "void value not ignored as it ought to be");
if (options.warnings.traditional)
warning (e, "void value not ignored as it ought to be");
//FIXME does anything need to be done here?
}
}
if (!type_assignable (f->sym->type->t.func.type, t)) {
if (!options.traditional)
return error (e, "type mismatch for return value of %s",
f->sym->name);
if (options.warnings.traditional)
warning (e, "type mismatch for return value of %s",
f->sym->name);
} else {
if (f->sym->type->t.func.type != t) {
e = cast_expr (f->sym->type->t.func.type, e);
t = f->sym->type->t.func.type;
}
}
if (e->type == ex_vector) {
e = assign_expr (new_temp_def_expr (t), e);
}
if (e->type == ex_block) {
e->e.block.result->rvalue = 1;
}
return new_unary_expr ('r', e);
}
expr_t *
conditional_expr (expr_t *cond, expr_t *e1, expr_t *e2)
{
expr_t *block = new_block_expr ();
type_t *type1 = get_type (e1);
type_t *type2 = get_type (e2);
expr_t *tlabel = new_label_expr ();
expr_t *flabel = new_label_expr ();
expr_t *elabel = new_label_expr ();
if (cond->type == ex_error)
return cond;
if (e1->type == ex_error)
return e1;
if (e2->type == ex_error)
return e2;
cond = convert_bool (cond, 1);
if (cond->type == ex_error)
return cond;
backpatch (cond->e.bool.true_list, tlabel);
backpatch (cond->e.bool.false_list, flabel);
block->e.block.result = (type1 == type2) ? new_temp_def_expr (type1) : 0;
append_expr (block, cond);
append_expr (cond->e.bool.e, flabel);
if (block->e.block.result)
append_expr (block, assign_expr (block->e.block.result, e2));
else
append_expr (block, e2);
append_expr (block, goto_expr (elabel));
append_expr (block, tlabel);
if (block->e.block.result)
append_expr (block, assign_expr (block->e.block.result, e1));
else
append_expr (block, e1);
append_expr (block, elabel);
return block;
}
expr_t *
incop_expr (int op, expr_t *e, int postop)
{
expr_t *one;
if (e->type == ex_error)
return e;
one = new_integer_expr (1); // integer constants get auto-cast to float
if (postop) {
expr_t *t1, *t2;
type_t *type = get_type (e);
expr_t *block = new_block_expr ();
expr_t *res = new_expr ();
if (e->type == ex_error) // get_type failed
return e;
t1 = new_temp_def_expr (type);
t2 = new_temp_def_expr (type);
append_expr (block, assign_expr (t1, e));
append_expr (block, assign_expr (t2, binary_expr (op, t1, one)));
res = copy_expr (e);
if (res->type == ex_uexpr && res->e.expr.op == '.')
res = pointer_expr (address_expr (res, 0, 0));
append_expr (block, assign_expr (res, t2));
block->e.block.result = t1;
return block;
} else {
return asx_expr (op, e, one);
}
}
expr_t *
array_expr (expr_t *array, expr_t *index)
{
type_t *array_type = get_type (array);
type_t *index_type = get_type (index);
expr_t *scale;
expr_t *offset;
expr_t *base;
expr_t *e;
int ind = 0;
if (array->type == ex_error)
return array;
if (index->type == ex_error)
return index;
if (array_type->type != ev_pointer && !is_array (array_type))
return error (array, "not an array");
if (!is_integral (index_type))
return error (index, "invalid array index type");
if (is_short_val (index))
ind = expr_short (index);
if (is_integer_val (index))
ind = expr_integer (index);
if (array_type->t.func.num_params
&& is_constant (index)
&& (ind < array_type->t.array.base
|| ind - array_type->t.array.base >= array_type->t.array.size))
return error (index, "array index out of bounds");
scale = new_integer_expr (type_size (array_type->t.array.type));
index = binary_expr ('*', index, scale);
base = new_integer_expr (array_type->t.array.base);
offset = binary_expr ('*', base, scale);
index = binary_expr ('-', index, offset);
if (is_short_val (index))
ind = expr_short (index);
if (is_integer_val (index))
ind = expr_integer (index);
if ((is_constant (index) && ind < 32768 && ind >= -32768))
index = new_short_expr (ind);
if (is_array (array_type)) {
e = address_expr (array, index, array_type->t.array.type);
} else {
if (!is_short_val (index) || expr_short (index)) {
e = new_binary_expr ('&', array, index);
//e->e.expr.type = array_type->aux_type;
e->e.expr.type = array_type;
} else {
e = array;
}
}
e = unary_expr ('.', e);
return e;
}
expr_t *
pointer_expr (expr_t *pointer)
{
type_t *pointer_type = get_type (pointer);
if (pointer->type == ex_error)
return pointer;
if (pointer_type->type != ev_pointer)
return error (pointer, "not a pointer");
return array_expr (pointer, new_integer_expr (0));
}
expr_t *
address_expr (expr_t *e1, expr_t *e2, type_t *t)
{
expr_t *e;
if (e1->type == ex_error)
return e1;
if (!t)
t = get_type (e1);
switch (e1->type) {
case ex_symbol:
if (e1->e.symbol->sy_type == sy_var) {
def_t *def = e1->e.symbol->s.def;
type_t *type = def->type;
if (is_array (type)) {
e = e1;
e->type = ex_value;
e->e.value = new_pointer_val (0, t, def);
} else {
e = new_pointer_expr (0, t, def);
e->line = e1->line;
e->file = e1->file;
}
break;
}
return error (e1, "invalid type for unary &");
case ex_expr:
if (e1->e.expr.op == '.') {
e = e1;
e->e.expr.op = '&';
e->e.expr.type = pointer_type (e->e.expr.type);
break;
}
if (e1->e.expr.op == 'm') {
// direct move, so obtain the address of the source
e = address_expr (e1->e.expr.e2, 0, t);
break;
}
if (e1->e.expr.op == 'M') {
// indirect move, so we already have the address of the source
e = e1->e.expr.e2;
break;
}
return error (e1, "invalid type for unary &");
case ex_uexpr:
if (e1->e.expr.op == '.') {
e = e1->e.expr.e1;
if (e->type == ex_expr && e->e.expr.op == '.') {
e->e.expr.type = pointer_type (e->e.expr.type);
e->e.expr.op = '&';
}
break;
}
if (e1->e.expr.op == 'A') {
if (!t)
t = e1->e.expr.type;
return address_expr (e1->e.expr.e1, e2, t);
}
return error (e1, "invalid type for unary &");
case ex_block:
if (!e1->e.block.result)
return error (e1, "invalid type for unary &");
e1->e.block.result = address_expr (e1->e.block.result, e2, t);
return e1;
case ex_label:
return new_label_ref (&e1->e.label);
case ex_temp:
e = new_unary_expr ('&', e1);
e->e.expr.type = pointer_type (t);
break;
default:
return error (e1, "invalid type for unary &");
}
if (e2) {
if (e2->type == ex_error)
return e2;
if (e->type == ex_value && e->e.value->lltype == ev_pointer
&& is_short_val (e2)) {
e->e.value = new_pointer_val (e->e.value->v.pointer.val + expr_short (e2), t, e->e.value->v.pointer.def);
} else {
if (!is_short_val (e2) || expr_short (e2)) {
if (e->type == ex_expr && e->e.expr.op == '&') {
e = new_binary_expr ('&', e->e.expr.e1,
binary_expr ('+', e->e.expr.e2, e2));
} else {
e = new_binary_expr ('&', e, e2);
}
}
if (e->type == ex_expr || e->type == ex_uexpr)
e->e.expr.type = pointer_type (t);
}
}
return e;
}
expr_t *
build_if_statement (int not, expr_t *test, expr_t *s1, expr_t *els, expr_t *s2)
{
int line = pr.source_line;
string_t file = pr.source_file;
expr_t *if_expr;
expr_t *tl = new_label_expr ();
expr_t *fl = new_label_expr ();
if (els && !s2) {
warning (els,
"suggest braces around empty body in an ‘else’ statement");
}
if (!els && !s1) {
warning (test,
"suggest braces around empty body in an ‘if’ statement");
}
pr.source_line = test->line;
pr.source_file = test->file;
if_expr = new_block_expr ();
test = convert_bool (test, 1);
if (test->type != ex_error) {
if (not) {
backpatch (test->e.bool.true_list, fl);
backpatch (test->e.bool.false_list, tl);
} else {
backpatch (test->e.bool.true_list, tl);
backpatch (test->e.bool.false_list, fl);
}
append_expr (test->e.bool.e, tl);
append_expr (if_expr, test);
}
append_expr (if_expr, s1);
if (els) {
pr.source_line = els->line;
pr.source_file = els->file;
}
if (s2) {
expr_t *nl = new_label_expr ();
append_expr (if_expr, goto_expr (nl));
append_expr (if_expr, fl);
append_expr (if_expr, s2);
append_expr (if_expr, nl);
} else {
append_expr (if_expr, fl);
}
pr.source_line = line;
pr.source_file = file;
return if_expr;
}
expr_t *
build_while_statement (int not, expr_t *test, expr_t *statement,
expr_t *break_label, expr_t *continue_label)
{
int line = pr.source_line;
string_t file = pr.source_file;
expr_t *l1 = new_label_expr ();
expr_t *l2 = break_label;
expr_t *while_expr;
pr.source_line = test->line;
pr.source_file = test->file;
while_expr = new_block_expr ();
append_expr (while_expr, goto_expr (continue_label));
append_expr (while_expr, l1);
append_expr (while_expr, statement);
append_expr (while_expr, continue_label);
test = convert_bool (test, 1);
if (test->type != ex_error) {
if (not) {
backpatch (test->e.bool.true_list, l2);
backpatch (test->e.bool.false_list, l1);
} else {
backpatch (test->e.bool.true_list, l1);
backpatch (test->e.bool.false_list, l2);
}
append_expr (test->e.bool.e, l2);
append_expr (while_expr, test);
}
pr.source_line = line;
pr.source_file = file;
return while_expr;
}
expr_t *
build_do_while_statement (expr_t *statement, int not, expr_t *test,
expr_t *break_label, expr_t *continue_label)
{
expr_t *l1 = new_label_expr ();
int line = pr.source_line;
string_t file = pr.source_file;
expr_t *do_while_expr;
if (!statement) {
warning (break_label,
"suggest braces around empty body in a ‘do’ statement");
}
pr.source_line = test->line;
pr.source_file = test->file;
do_while_expr = new_block_expr ();
append_expr (do_while_expr, l1);
append_expr (do_while_expr, statement);
append_expr (do_while_expr, continue_label);
test = convert_bool (test, 1);
if (test->type != ex_error) {
if (not) {
backpatch (test->e.bool.true_list, break_label);
backpatch (test->e.bool.false_list, l1);
} else {
backpatch (test->e.bool.true_list, l1);
backpatch (test->e.bool.false_list, break_label);
}
append_expr (test->e.bool.e, break_label);
append_expr (do_while_expr, test);
}
pr.source_line = line;
pr.source_file = file;
return do_while_expr;
}
expr_t *
build_for_statement (expr_t *init, expr_t *test, expr_t *next,
expr_t *statement,
expr_t *break_label, expr_t *continue_label)
{
expr_t *tl = new_label_expr ();
expr_t *fl = break_label;
expr_t *l1 = 0;
expr_t *t;
int line = pr.source_line;
string_t file = pr.source_file;
expr_t *for_expr;
if (next)
t = next;
else if (test)
t = test;
else if (init)
t = init;
else
t = continue_label;
pr.source_line = t->line;
pr.source_file = t->file;
for_expr = new_block_expr ();
append_expr (for_expr, init);
if (test) {
l1 = new_label_expr ();
append_expr (for_expr, goto_expr (l1));
}
append_expr (for_expr, tl);
append_expr (for_expr, statement);
append_expr (for_expr, continue_label);
append_expr (for_expr, next);
if (test) {
append_expr (for_expr, l1);
test = convert_bool (test, 1);
if (test->type != ex_error) {
backpatch (test->e.bool.true_list, tl);
backpatch (test->e.bool.false_list, fl);
append_expr (test->e.bool.e, fl);
append_expr (for_expr, test);
}
} else {
append_expr (for_expr, goto_expr (tl));
append_expr (for_expr, fl);
}
pr.source_line = line;
pr.source_file = file;
return for_expr;
}
expr_t *
build_state_expr (expr_t *e)
{
expr_t *frame = 0;
expr_t *think = 0;
expr_t *step = 0;
e = reverse_expr_list (e);
frame = e;
think = frame->next;
step = think->next;
if (think->type == ex_symbol)
think = think_expr (think->e.symbol);
if (is_integer_val (frame))
convert_int (frame);
if (!type_assignable (&type_float, get_type (frame)))
return error (frame, "invalid type for frame number");
if (extract_type (think) != ev_func)
return error (think, "invalid type for think");
if (step) {
if (step->next)
return error (step->next, "too many state arguments");
if (is_integer_val (step))
convert_int (step);
if (!type_assignable (&type_float, get_type (step)))
return error (step, "invalid type for step");
}
return new_state_expr (frame, think, step);
}
expr_t *
think_expr (symbol_t *think_sym)
{
symbol_t *sym;
if (think_sym->table)
return new_symbol_expr (think_sym);
sym = symtab_lookup (current_symtab, "think");
if (sym && sym->sy_type == sy_var && sym->type
&& sym->type->type == ev_field
&& sym->type->t.fldptr.type->type == ev_func) {
think_sym->type = sym->type->t.fldptr.type;
} else {
think_sym->type = &type_function;
}
think_sym = function_symbol (think_sym, 0, 1);
make_function (think_sym, 0, current_symtab->space, current_storage);
return new_symbol_expr (think_sym);
}
expr_t *
cast_expr (type_t *type, expr_t *e)
{
expr_t *c;
type_t *e_type;
convert_name (e);
if (e->type == ex_error)
return e;
e_type = get_type (e);
if (type == e_type)
return e;
if ((type == type_default && is_enum (e_type))
|| (is_enum (type) && e_type == type_default))
return e;
if (!(type->type == ev_pointer
&& (e_type->type == ev_pointer || is_integral (e_type)
|| is_array (e_type)))
&& !(is_integral (type) && e_type->type == ev_pointer)
&& !(type->type == ev_func && e_type->type == ev_func)
&& !(is_scalar (type) && is_scalar (e_type))) {
return cast_error (e, e_type, type);
}
if (is_array (e_type)) {
return address_expr (e, 0, type->t.fldptr.type);
}
if (is_constant (e) && is_scalar (type) && is_scalar (e_type)) {
ex_value_t *val = 0;
if (e->type == ex_symbol && e->e.symbol->sy_type == sy_const) {
val = e->e.symbol->s.value;
} else if (e->type == ex_value) {
val = e->e.value;
} else if (e->type == ex_nil) {
convert_nil (e, type);
return e;
}
if (!val)
internal_error (e, "unexpected constant expression type");
e->e.value = convert_value (val, type);
e->type = ex_value;
c = e;
} else if ((is_float (type) && is_integral (e_type))
|| (is_integral (type) && is_float (e_type))) {
c = new_unary_expr ('C', e);
c->e.expr.type = type;
} else if (e->type == ex_uexpr && e->e.expr.op == '.') {
e->e.expr.type = type;
c = e;
} else {
c = new_alias_expr (type, e);
}
return c;
}
expr_t *
selector_expr (keywordarg_t *selector)
{
dstring_t *sel_id = dstring_newstr ();
expr_t *sel;
symbol_t *sel_sym;
symbol_t *sel_table;
int index;
selector = copy_keywordargs (selector);
selector = (keywordarg_t *) reverse_params ((param_t *) selector);
selector_name (sel_id, selector);
index = selector_index (sel_id->str);
index *= type_size (type_SEL.t.fldptr.type);
sel_sym = make_symbol ("_OBJ_SELECTOR_TABLE_PTR", &type_SEL,
pr.near_data, sc_static);
if (!sel_sym->table) {
symtab_addsymbol (pr.symtab, sel_sym);
sel_table = make_symbol ("_OBJ_SELECTOR_TABLE",
array_type (type_SEL.t.fldptr.type, 0),
pr.far_data, sc_extern);
if (!sel_table->table)
symtab_addsymbol (pr.symtab, sel_table);
reloc_def_def (sel_table->s.def, sel_sym->s.def);
}
sel = new_symbol_expr (sel_sym);
dstring_delete (sel_id);
sel = new_binary_expr ('&', sel, new_short_expr (index));
sel->e.expr.type = &type_SEL;
return sel;
}
expr_t *
protocol_expr (const char *protocol)
{
return error (0, "not implemented");
}
expr_t *
encode_expr (type_t *type)
{
dstring_t *encoding = dstring_newstr ();
expr_t *e;
encode_type (encoding, type);
e = new_string_expr (encoding->str);
free (encoding);
return e;
}
expr_t *
super_expr (class_type_t *class_type)
{
symbol_t *sym;
expr_t *super;
expr_t *e;
expr_t *super_block;
class_t *class;
if (!class_type)
return error (0, "`super' used outside of class implementation");
class = extract_class (class_type);
if (!class->super_class)
return error (0, "%s has no super class", class->name);
sym = symtab_lookup (current_symtab, ".super");
if (!sym || sym->table != current_symtab) {
sym = new_symbol_type (".super", &type_obj_super);
initialize_def (sym, 0, current_symtab->space, sc_local);
}
super = new_symbol_expr (sym);
super_block = new_block_expr ();
e = assign_expr (field_expr (super, new_name_expr ("self")),
new_name_expr ("self"));
append_expr (super_block, e);
e = new_symbol_expr (class_pointer_symbol (class));
e = assign_expr (field_expr (super, new_name_expr ("class")),
field_expr (e, new_name_expr ("super_class")));
append_expr (super_block, e);
e = address_expr (super, 0, 0);
super_block->e.block.result = e;
return super_block;
}
expr_t *
message_expr (expr_t *receiver, keywordarg_t *message)
{
expr_t *args = 0, **a = &args;
expr_t *selector = selector_expr (message);
expr_t *call;
keywordarg_t *m;
int self = 0, super = 0, class_msg = 0;
type_t *rec_type;
type_t *return_type;
type_t *method_type = &type_IMP;
class_t *class = 0;
method_t *method;
expr_t *send_msg;
if (receiver->type == ex_symbol
&& strcmp (receiver->e.symbol->name, "super") == 0) {
super = 1;
receiver = super_expr (current_class);
if (receiver->type == ex_error)
return receiver;
receiver = cast_expr (&type_id, receiver); //FIXME better way?
class = extract_class (current_class);
} else {
if (receiver->type == ex_symbol) {
if (strcmp (receiver->e.symbol->name, "self") == 0)
self = 1;
if (receiver->e.symbol->sy_type == sy_class) {
class = receiver->e.symbol->type->t.class;
class_msg = 1;
receiver = new_symbol_expr (class_pointer_symbol (class));
}
} else if (receiver->type == ex_nil) {
convert_nil (receiver, &type_id);
}
rec_type = get_type (receiver);
if (receiver->type == ex_error)
return receiver;
if (rec_type == &type_id || rec_type == &type_Class) {
} else {
if (rec_type->type == ev_pointer)
rec_type = rec_type->t.fldptr.type;
if (!obj_is_class (rec_type))
return error (receiver, "not a class/object");
if (self) {
if (!class)
class = extract_class (current_class);
if (rec_type == &type_obj_class)
class_msg = 1;
} else {
if (!class)
class = rec_type->t.class;
}
}
}
return_type = &type_id;
method = class_message_response (class, class_msg, selector);
if (method)
return_type = method->type->t.func.type;
for (m = message; m; m = m->next) {
*a = m->expr;
while ((*a))
a = &(*a)->next;
}
*a = selector;
a = &(*a)->next;
*a = receiver;
send_msg = send_message (super);
if (method) {
expr_t *err;
if ((err = method_check_params (method, args)))
return err;
method_type = method->type;
}
call = build_function_call (send_msg, method_type, args);
if (call->type == ex_error)
return receiver;
call->e.block.result = new_ret_expr (return_type);
return call;
}
expr_t *
sizeof_expr (expr_t *expr, struct type_s *type)
{
if (!((!expr) ^ (!type)))
internal_error (0, 0);
if (!type)
type = get_type (expr);
expr = new_integer_expr (type_size (type));
return expr;
}
expr_t *
reverse_expr_list (expr_t *e)
{
expr_t *r = 0;
while (e) {
expr_t *t = e->next;
e->next = r;
r = e;
e = t;
}
return r;
}