quakeforge/libs/video/renderer/sw/sw_rbsp.c
Bill Currie 98cbacfe9d [renderer] Remove redundant calls to visit_leaf
I doubt the calls were ever actually made in a normal map due to the
node actually being a node when breaking out of the loop, but when I
experimented with an empty world model (no nodes, one infinite empty
leaf) I found that visit_leaf was getting called twice instead of once.
2022-04-26 07:14:03 +09:00

546 lines
14 KiB
C

/*
sw_r_bsp.c
(description)
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <math.h>
#include <stdlib.h>
#include "qfalloca.h"
#include "QF/render.h"
#include "QF/sys.h"
#include "QF/scene/entity.h"
#include "r_internal.h"
typedef struct glbspctx_s {
mod_brush_t *brush;
entity_t *entity;
} swbspctx_t;
// current entity info
qboolean insubmodel;
vec3_t r_worldmodelorg;
mvertex_t *r_pcurrentvertbase;
static float entity_rotation[3][3];
int r_currentbkey;
typedef enum { touchessolid, drawnode, nodrawnode } solidstate_t;
#define MAX_BMODEL_VERTS 500 // 6K
#define MAX_BMODEL_EDGES 1000 // 12K
static mvertex_t *pbverts;
static bedge_t *pbedges;
static int numbverts, numbedges;
int numbtofpolys;
static btofpoly_t *pbtofpolys;
static mvertex_t *pfrontenter, *pfrontexit;
static qboolean makeclippededge;
static void
R_EntityRotate (vec3_t vec)
{
vec3_t tvec;
VectorCopy (vec, tvec);
vec[0] = DotProduct (entity_rotation[0], tvec);
vec[1] = DotProduct (entity_rotation[1], tvec);
vec[2] = DotProduct (entity_rotation[2], tvec);
}
void
R_RotateBmodel (transform_t *transform)
{
mat4f_t mat;
Transform_GetWorldMatrix (transform, mat);
VectorCopy (mat[0], entity_rotation[0]);
VectorCopy (mat[1], entity_rotation[1]);
VectorCopy (mat[2], entity_rotation[2]);
// rotate modelorg and the transformation matrix
R_EntityRotate (modelorg);
R_EntityRotate (vfwd);
R_EntityRotate (vright);
R_EntityRotate (vup);
R_TransformFrustum ();
}
static void
R_RecursiveClipBPoly (entity_t *ent, bedge_t *pedges, mnode_t *pnode,
msurface_t *psurf)
{
bedge_t *psideedges[2], *pnextedge, *ptedge;
int i, side, lastside;
float dist, frac, lastdist;
plane_t *splitplane, tplane;
mvertex_t *pvert, *plastvert, *ptvert;
mnode_t *pn;
psideedges[0] = psideedges[1] = NULL;
makeclippededge = false;
// transform the BSP plane into model space
// FIXME: cache these?
splitplane = pnode->plane;
tplane.dist = splitplane->dist -
DotProduct (r_entorigin, splitplane->normal);
tplane.normal[0] = DotProduct (entity_rotation[0], splitplane->normal);
tplane.normal[1] = DotProduct (entity_rotation[1], splitplane->normal);
tplane.normal[2] = DotProduct (entity_rotation[2], splitplane->normal);
// clip edges to BSP plane
for (; pedges; pedges = pnextedge) {
pnextedge = pedges->pnext;
// set the status for the last point as the previous point
// FIXME: cache this stuff somehow?
plastvert = pedges->v[0];
lastdist = DotProduct (plastvert->position, tplane.normal) -
tplane.dist;
if (lastdist > 0)
lastside = 0;
else
lastside = 1;
pvert = pedges->v[1];
dist = DotProduct (pvert->position, tplane.normal) - tplane.dist;
if (dist > 0)
side = 0;
else
side = 1;
if (side != lastside) {
// clipped
if (numbverts >= MAX_BMODEL_VERTS)
return;
// generate the clipped vertex
frac = lastdist / (lastdist - dist);
ptvert = &pbverts[numbverts++];
ptvert->position[0] = plastvert->position[0] +
frac * (pvert->position[0] - plastvert->position[0]);
ptvert->position[1] = plastvert->position[1] +
frac * (pvert->position[1] - plastvert->position[1]);
ptvert->position[2] = plastvert->position[2] +
frac * (pvert->position[2] - plastvert->position[2]);
// split into two edges, one on each side, and remember entering
// and exiting points
// FIXME: share the clip edge by having a winding direction flag?
if (numbedges >= (MAX_BMODEL_EDGES - 1)) {
Sys_Printf ("Out of edges for bmodel\n");
return;
}
ptedge = &pbedges[numbedges];
ptedge->pnext = psideedges[lastside];
psideedges[lastside] = ptedge;
ptedge->v[0] = plastvert;
ptedge->v[1] = ptvert;
ptedge = &pbedges[numbedges + 1];
ptedge->pnext = psideedges[side];
psideedges[side] = ptedge;
ptedge->v[0] = ptvert;
ptedge->v[1] = pvert;
numbedges += 2;
if (side == 0) {
// entering for front, exiting for back
pfrontenter = ptvert;
makeclippededge = true;
} else {
pfrontexit = ptvert;
makeclippededge = true;
}
} else {
// add the edge to the appropriate side
pedges->pnext = psideedges[side];
psideedges[side] = pedges;
}
}
// if anything was clipped, reconstitute and add the edges along the clip
// plane to both sides (but in opposite directions)
if (makeclippededge) {
if (numbedges >= (MAX_BMODEL_EDGES - 2)) {
Sys_Printf ("Out of edges for bmodel\n");
return;
}
ptedge = &pbedges[numbedges];
ptedge->pnext = psideedges[0];
psideedges[0] = ptedge;
ptedge->v[0] = pfrontexit;
ptedge->v[1] = pfrontenter;
ptedge = &pbedges[numbedges + 1];
ptedge->pnext = psideedges[1];
psideedges[1] = ptedge;
ptedge->v[0] = pfrontenter;
ptedge->v[1] = pfrontexit;
numbedges += 2;
}
// draw or recurse further
for (i = 0; i < 2; i++) {
if (psideedges[i]) {
// draw if we've reached a non-solid leaf, done if all that's left
// is a solid leaf, and continue down the tree if it's not a leaf
pn = pnode->children[i];
// we're done with this branch if the node or leaf isn't in the PVS
if (pn->visframe == r_visframecount) {
if (pn->contents < 0) {
if (pn->contents != CONTENTS_SOLID) {
r_currentbkey = ((mleaf_t *) pn)->key;
R_RenderBmodelFace (ent, psideedges[i], psurf);
}
} else {
R_RecursiveClipBPoly (ent, psideedges[i],
pnode->children[i], psurf);
}
}
}
}
}
void
R_DrawSolidClippedSubmodelPolygons (entity_t *ent, model_t *model,
mnode_t *topnode)
{
int i, j, lindex;
vec_t dot;
msurface_t *psurf;
int numsurfaces;
plane_t *pplane;
mvertex_t bverts[MAX_BMODEL_VERTS];
bedge_t bedges[MAX_BMODEL_EDGES], *pbedge;
medge_t *pedge, *pedges;
mod_brush_t *brush = &model->brush;
// FIXME: use bounding-box-based frustum clipping info?
psurf = &brush->surfaces[brush->firstmodelsurface];
numsurfaces = brush->nummodelsurfaces;
pedges = brush->edges;
for (i = 0; i < numsurfaces; i++, psurf++) {
// find which side of the node we are on
pplane = psurf->plane;
dot = DotProduct (modelorg, pplane->normal) - pplane->dist;
// draw the polygon
if (((psurf->flags & SURF_PLANEBACK) && (dot < -BACKFACE_EPSILON)) ||
(!(psurf->flags & SURF_PLANEBACK) && (dot > BACKFACE_EPSILON))) {
// FIXME: use bounding-box-based frustum clipping info?
// copy the edges to bedges, flipping if necessary so always
// clockwise winding
// FIXME: if edges and vertices get caches, these assignments must
// move outside the loop, and overflow checking must be done here
pbverts = bverts;
pbedges = bedges;
numbverts = numbedges = 0;
if (psurf->numedges > 0) {
pbedge = &bedges[numbedges];
numbedges += psurf->numedges;
for (j = 0; j < psurf->numedges; j++) {
lindex = brush->surfedges[psurf->firstedge + j];
if (lindex > 0) {
pedge = &pedges[lindex];
pbedge[j].v[0] = &r_pcurrentvertbase[pedge->v[0]];
pbedge[j].v[1] = &r_pcurrentvertbase[pedge->v[1]];
} else {
lindex = -lindex;
pedge = &pedges[lindex];
pbedge[j].v[0] = &r_pcurrentvertbase[pedge->v[1]];
pbedge[j].v[1] = &r_pcurrentvertbase[pedge->v[0]];
}
pbedge[j].pnext = &pbedge[j + 1];
}
pbedge[j - 1].pnext = NULL; // mark end of edges
R_RecursiveClipBPoly (ent, pbedge, topnode, psurf);
} else {
Sys_Error ("no edges in bmodel");
}
}
}
}
void
R_DrawSubmodelPolygons (entity_t *ent, model_t *model, int clipflags,
mnode_t *topnode)
{
int i;
vec_t dot;
msurface_t *psurf;
int numsurfaces;
plane_t *pplane;
mod_brush_t *brush = &model->brush;
// FIXME: use bounding-box-based frustum clipping info?
psurf = &brush->surfaces[brush->firstmodelsurface];
numsurfaces = brush->nummodelsurfaces;
for (i = 0; i < numsurfaces; i++, psurf++) {
// find which side of the node we are on
pplane = psurf->plane;
dot = DotProduct (modelorg, pplane->normal) - pplane->dist;
// draw the polygon
if (((psurf->flags & SURF_PLANEBACK) && (dot < -BACKFACE_EPSILON)) ||
(!(psurf->flags & SURF_PLANEBACK) && (dot > BACKFACE_EPSILON))) {
r_currentkey = ((mleaf_t *) topnode)->key;
// FIXME: use bounding-box-based frustum clipping info?
R_RenderFace (ent, psurf, clipflags);
}
}
}
static inline void
visit_leaf (mleaf_t *leaf)
{
// deal with model fragments in this leaf
if (leaf->efrags)
R_StoreEfrags (leaf->efrags);
leaf->key = r_currentkey;
r_currentkey++; // all bmodels in a leaf share the same key
}
static inline int
get_side (mnode_t *node)
{
// find which side of the node we are on
plane_t *plane = node->plane;
vec4f_t org = r_refdef.frame.position;
if (plane->type < 3)
return (org[plane->type] - plane->dist) < 0;
return (DotProduct (org, plane->normal) - plane->dist) < 0;
}
static void
visit_node (swbspctx_t *bctx, mnode_t *node, int side, int clipflags)
{
int c;
msurface_t *surf;
entity_t *ent = bctx->entity;
mod_brush_t *brush = &ent->renderer.model->brush;
// sneaky hack for side = side ? SURF_PLANEBACK : 0;
side = (~side + 1) & SURF_PLANEBACK;
// draw stuff
if ((c = node->numsurfaces)) {
surf = brush->surfaces + node->firstsurface;
for (; c; c--, surf++) {
if (surf->visframe != r_visframecount)
continue;
// side is either 0 or SURF_PLANEBACK
if (side ^ (surf->flags & SURF_PLANEBACK))
continue; // wrong side
if (r_drawpolys) {
if (r_worldpolysbacktofront) {
if (numbtofpolys < MAX_BTOFPOLYS) {
pbtofpolys[numbtofpolys].clipflags = clipflags;
pbtofpolys[numbtofpolys].psurf = surf;
numbtofpolys++;
}
} else {
R_RenderPoly (ent, surf, clipflags);
}
} else {
R_RenderFace (ent, surf, clipflags);
}
}
// all surfaces on the same node share the same sequence number
r_currentkey++;
}
}
static inline int
test_node (mnode_t *node, int *clipflags)
{
int i, *pindex;
vec3_t acceptpt, rejectpt;
double d;
if (node->contents < 0)
return 0;
if (node->visframe != r_visframecount)
return 0;
// cull the clipping planes if not trivial accept
// FIXME: the compiler is doing a lousy job of optimizing here; it could be
// twice as fast in ASM
if (*clipflags) {
for (i = 0; i < 4; i++) {
if (!(*clipflags & (1 << i)))
continue; // don't need to clip against it
// generate accept and reject points
// FIXME: do with fast look-ups or integer tests based on the
// sign bit of the floating point values
pindex = pfrustum_indexes[i];
rejectpt[0] = (float) node->minmaxs[pindex[0]];
rejectpt[1] = (float) node->minmaxs[pindex[1]];
rejectpt[2] = (float) node->minmaxs[pindex[2]];
d = DotProduct (rejectpt, view_clipplanes[i].normal);
d -= view_clipplanes[i].dist;
if (d <= 0)
return 0;
acceptpt[0] = (float) node->minmaxs[pindex[3 + 0]];
acceptpt[1] = (float) node->minmaxs[pindex[3 + 1]];
acceptpt[2] = (float) node->minmaxs[pindex[3 + 2]];
d = DotProduct (acceptpt, view_clipplanes[i].normal);
d -= view_clipplanes[i].dist;
if (d >= 0)
*clipflags &= ~(1 << i); // node is entirely on screen
}
}
return 1;
}
static void
R_VisitWorldNodes (swbspctx_t *bctx, int clipflags)
{
typedef struct {
mnode_t *node;
int side, clipflags;
} rstack_t;
rstack_t *node_ptr;
rstack_t *node_stack;
mnode_t *node;
mnode_t *front;
int side, cf;
mod_brush_t *brush = &bctx->entity->renderer.model->brush;
node = brush->nodes;
// +2 for paranoia
node_stack = alloca ((brush->depth + 2) * sizeof (rstack_t));
node_ptr = node_stack;
cf = clipflags;
while (1) {
while (test_node (node, &cf)) {
cf = clipflags;
side = get_side (node);
front = node->children[side];
if (test_node (front, &cf)) {
node_ptr->node = node;
node_ptr->side = side;
node_ptr->clipflags = clipflags;
node_ptr++;
clipflags = cf;
node = front;
continue;
}
if (front->contents < 0 && front->contents != CONTENTS_SOLID)
visit_leaf ((mleaf_t *) front);
visit_node (bctx, node, side, clipflags);
node = node->children[!side];
}
if (node->contents < 0 && node->contents != CONTENTS_SOLID)
visit_leaf ((mleaf_t *) node);
if (node_ptr != node_stack) {
node_ptr--;
node = node_ptr->node;
side = node_ptr->side;
clipflags = node_ptr->clipflags;
visit_node (bctx, node, side, clipflags);
node = node->children[!side];
continue;
}
break;
}
}
void
R_RenderWorld (void)
{
int i;
btofpoly_t btofpolys[MAX_BTOFPOLYS];
static entity_t worldent = {};
entity_t *ent = &worldent;
mod_brush_t *brush = &r_refdef.worldmodel->brush;
swbspctx_t bspctx = {
brush,
ent,
};
worldent.renderer.model = r_refdef.worldmodel;
pbtofpolys = btofpolys;
brush = &r_refdef.worldmodel->brush;
r_pcurrentvertbase = brush->vertexes;
R_VisitWorldNodes (&bspctx, 15);
// if the driver wants the polygons back to front, play the visible ones
// back in that order
if (r_worldpolysbacktofront) {
for (i = numbtofpolys - 1; i >= 0; i--) {
R_RenderPoly (ent, btofpolys[i].psurf, btofpolys[i].clipflags);
}
}
}