quakeforge/tools/qfcc/source/qp-parse.y
2011-01-12 23:34:15 +09:00

558 lines
11 KiB
Text

%{
/*
qc-parse.y
parser for quakec
Copyright (C) 2001 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2001/06/12
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
static __attribute__ ((used)) const char rcsid[] = "$Id$";
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include "expr.h"
#include "function.h"
#include "qfcc.h"
#include "type.h"
#define YYDEBUG 1
#define YYERROR_VERBOSE 1
#undef YYERROR_VERBOSE
extern char *yytext;
static void
yyerror (const char *s)
{
#ifdef YYERROR_VERBOSE
error (0, "%s %s\n", yytext, s);
#else
error (0, "%s before %s", s, yytext);
#endif
}
static void
parse_error (void)
{
error (0, "parse error before %s", yytext);
}
#define PARSE_ERROR do { parse_error (); YYERROR; } while (0)
int yylex (void);
%}
%union {
int op;
struct def_s *def;
struct hashtab_s *def_list;
struct type_s *type;
struct typedef_s *typename;
struct expr_s *expr;
int integer_val;
unsigned uinteger_val;
float float_val;
const char *string_val;
float vector_val[3];
float quaternion_val[4];
struct function_s *function;
struct switch_block_s *switch_block;
struct param_s *param;
struct method_s *method;
struct class_s *class;
struct category_s *category;
struct class_type_s *class_type;
struct protocol_s *protocol;
struct protocollist_s *protocol_list;
struct keywordarg_s *keywordarg;
struct methodlist_s *methodlist;
struct struct_s *strct;
}
// these tokens are common with qc
%nonassoc IFX
%nonassoc ELSE
%nonassoc BREAK_PRIMARY
%nonassoc ';'
%nonassoc CLASS_NOT_CATEGORY
%nonassoc STORAGEX
%right <op> '=' ASX PAS /* pointer assign */
%right '?' ':'
%left OR
%left AND
%left '|'
%left '^'
%left '&'
%left EQ NE
%left LE GE LT GT
// end of tokens common with qc
%left <string_val> RELOP
%left <op> ADDOP
%left <op> MULOP
%right UNARY
%token <type> TYPE
%token <string_val> ID
%token <integer_val> INT_VAL
%token <string_val> STRING_VAL
%token <quaternion_val> QUATERNION_VAL
%token <vector_val> VECTOR_VAL
%token <float_val> FLOAT_VAL
%token PROGRAM VAR ARRAY OF FUNCTION PROCEDURE PBEGIN END IF THEN ELSE
%token WHILE DO RANGE ASSIGNOP NOT
%type <type> standard_type type
%type <expr> const num identifier_list statement_list statement
%type <expr> optional_statements compound_statement procedure_statement
%type <expr> expression_list expression unary_expr primary variable
%type <param> parameter_list arguments
%type <def> subprogram_head program_head
%type <function> subprogram_declaration
%type <op> sign
%type <expr> name
%{
function_t *current_func;
struct class_type_s *current_class;
expr_t *local_expr;
struct scope_s *current_scope;
param_t *current_params;
static int convert_relop (const char *relop);
%}
%%
program
: program_head
declarations
subprogram_declarations
{
$1 = get_function_def ($1->name, $1->type, current_scope,
st_global, 0, 1);
current_func = begin_function ($1, 0, 0);
}
compound_statement '.'
{
current_scope = current_scope->parent;
//current_storage = st_global;
build_code_function (current_func, 0, $5);
current_func = 0;
}
;
program_head
: PROGRAM ID '(' identifier_list ')' ';'
{
type_t *type = parse_params (&type_void, 0);
current_params = 0;
$$ = get_function_def ($2, type, current_scope, st_extern, 0, 1);
}
;
identifier_list
: ID
{
$$ = new_block_expr ();
append_expr ($$, new_name_expr ($1));
}
| identifier_list ',' ID
{
append_expr ($1, new_name_expr ($3));
}
;
declarations
: declarations VAR identifier_list ':' type ';'
{
type_t *type = $5;
expr_t *id_list = $3;
expr_t *e;
for (e = id_list->e.block.head; e; e = e->next)
get_def (type, e->e.string_val, current_scope, st_global);
}
| /* empty */
;
type
: standard_type { $$ = $1; }
| ARRAY '[' num RANGE num ']' OF standard_type
{
if ($3->type != ex_integer || $5->type != ex_integer)
error (0, "array bounds must be integers");
$$ = based_array_type ($8, $3->e.integer_val, $5->e.integer_val);
}
;
standard_type
: TYPE { $$ = $1; }
;
subprogram_declarations
: subprogram_declarations subprogram_declaration
| /* emtpy */
;
subprogram_declaration
: subprogram_head ';'
{
current_func = begin_function ($1, 0, current_params);
current_scope = current_func->scope;
//current_storage = st_local;
}
declarations compound_statement ';'
{
type_t *ret_type = $1->type->t.func.type;
current_scope = current_scope->parent;
//current_storage = st_global;
//FIXME want a true void return
if (ret_type)
append_expr ($5, return_expr (current_func,
new_ret_expr (ret_type)));
build_code_function (current_func, 0, $5);
current_func = 0;
}
| subprogram_head ASSIGNOP '#' const ';'
{
$$ = build_builtin_function ($1, $4);
if ($$) {
build_scope ($$, $$->def, current_params);
flush_scope ($$->scope, 1);
}
}
;
subprogram_head
: FUNCTION ID arguments ':' standard_type
{
type_t *type = parse_params ($5, $3);
current_params = $3;
$$ = get_function_def ($2, type, current_scope, st_global, 0, 1);
}
| PROCEDURE ID arguments
{
type_t *type = parse_params (&type_void, $3);
$$ = get_function_def ($2, type, current_scope, st_global, 0, 1);
}
;
arguments
: '(' parameter_list ')' { $$ = $2; }
| /* emtpy */ { $$ = 0; }
;
parameter_list
: identifier_list ':' type
{
type_t *type = $3;
expr_t *id_list = $1;
expr_t *e;
param_t **p;
$$ = 0;
p = &$$;
for (e = id_list->e.block.head; e; e = e->next) {
*p = new_param (0, type, e->e.string_val);
p = &(*p)->next;
}
}
| parameter_list ';' identifier_list ':' type
{
type_t *type = $5;
expr_t *id_list = $3;
expr_t *e;
param_t **p;
$$ = $1;
p = &$$;
for ( ; *p; p = &(*p)->next)
;
for (e = id_list->e.block.head; e; e = e->next) {
*p = new_param (0, type, e->e.string_val);
p = &(*p)->next;
}
}
;
compound_statement
: PBEGIN optional_statements END { $$ = $2; }
;
optional_statements
: statement_list { $$ = $1; }
| /* emtpy */ { $$ = 0; }
;
statement_list
: statement
{
$$ = new_block_expr ();
append_expr ($$, $1);
}
| statement_list ';' statement
{
$$ = $1;
append_expr ($$, $3);
}
;
statement
: variable ASSIGNOP expression
{
convert_name ($1);
if ($1->type == ex_def && extract_type ($1) == ev_func)
$1 = new_ret_expr ($1->e.def->type->t.func.type);
$$ = assign_expr ($1, $3);
}
| procedure_statement { $$ = $1; }
| compound_statement { $$ = $1; }
| IF expression THEN statement ELSE statement
{
int line = pr.source_line;
string_t file = pr.source_file;
expr_t *tl = new_label_expr ();
expr_t *fl = new_label_expr ();
expr_t *nl = new_label_expr ();
pr.source_line = $2->line;
pr.source_file = $2->file;
$$ = new_block_expr ();
$2 = convert_bool ($2, 1);
if ($2->type != ex_error) {
backpatch ($2->e.bool.true_list, tl);
backpatch ($2->e.bool.false_list, fl);
append_expr ($2->e.bool.e, tl);
append_expr ($$, $2);
}
append_expr ($$, $4);
append_expr ($$, new_unary_expr ('g', nl));
append_expr ($$, fl);
append_expr ($$, $6);
append_expr ($$, nl);
pr.source_line = line;
pr.source_file = file;
}
| IF expression THEN statement %prec IFX
{
int line = pr.source_line;
string_t file = pr.source_file;
expr_t *tl = new_label_expr ();
expr_t *fl = new_label_expr ();
pr.source_line = $2->line;
pr.source_file = $2->file;
$$ = new_block_expr ();
$2 = convert_bool ($2, 1);
if ($2->type != ex_error) {
backpatch ($2->e.bool.true_list, tl);
backpatch ($2->e.bool.false_list, fl);
append_expr ($2->e.bool.e, tl);
append_expr ($$, $2);
}
append_expr ($$, $4);
append_expr ($$, fl);
pr.source_line = line;
pr.source_file = file;
}
| WHILE expression DO statement
{
int line = pr.source_line;
string_t file = pr.source_file;
expr_t *l1 = new_label_expr ();
expr_t *l2 = new_label_expr ();
expr_t *cont = new_label_expr ();
pr.source_line = $2->line;
pr.source_file = $2->file;
$$ = new_block_expr ();
append_expr ($$, new_unary_expr ('g', cont));
append_expr ($$, l1);
append_expr ($$, $4);
append_expr ($$, cont);
$2 = convert_bool ($2, 1);
if ($2->type != ex_error) {
backpatch ($2->e.bool.true_list, l1);
backpatch ($2->e.bool.false_list, l2);
append_expr ($2->e.bool.e, l2);
append_expr ($$, $2);
}
pr.source_line = line;
pr.source_file = file;
}
;
variable
: name { $$ = $1; }
| name '[' expression ']' { $$ = array_expr ($1, $3); }
;
procedure_statement
: name { $$ = function_expr ($1, 0); }
| name '(' expression_list ')' { $$ = function_expr ($1, $3); }
;
expression_list
: expression
| expression_list ',' expression
{
$3->next = $1;
$$ = $3;
}
;
unary_expr
: primary
| sign unary_expr %prec UNARY
{
if ($1 == '-')
$$ = unary_expr ('-', $2);
else
$$ = $2;
}
| NOT expression %prec UNARY
{
$$ = unary_expr ('!', $2);
}
;
primary
: variable
{
convert_name ($1);
if ($1->type == ex_def && extract_type ($1) == ev_func)
$1 = function_expr ($1, 0);
$$ = $1;
}
| const { $$ = $1; }
| name '(' expression_list ')' { $$ = function_expr ($1, $3); }
| '(' expression ')' { $$ = $2; }
;
expression
: unary_expr
| expression RELOP expression
{
int op = convert_relop ($2);
$$ = binary_expr (op, $1, $3);
}
| expression ADDOP expression
{
if ($2 == 'o')
$$ = bool_expr (OR, new_label_expr (), $1, $3);
else
$$ = binary_expr ($2, $1, $3);
}
| expression MULOP expression
{
if ($2 == 'd')
$2 = '/';
else if ($2 == 'm')
$2 = '%';
if ($2 == 'a')
$$ = bool_expr (AND, new_label_expr (), $1, $3);
else
$$ = binary_expr ($2, $1, $3);
}
;
sign
: ADDOP
{
if ($1 == 'o')
PARSE_ERROR;
}
;
name
: ID { $$ = new_name_expr ($1); }
;
const
: num { $$ = $1; }
| STRING_VAL { $$ = new_string_expr ($1); }
;
num
: INT_VAL { $$ = new_integer_expr ($1); }
| FLOAT_VAL { $$ = new_float_expr ($1); }
| VECTOR_VAL { $$ = new_vector_expr ($1); }
| QUATERNION_VAL { $$ = new_quaternion_expr ($1); }
;
%%
static int
convert_relop (const char *relop)
{
switch (relop[0]) {
case '=':
return EQ;
case '<':
switch (relop[1]) {
case 0:
return LT;
case '>':
return NE;
case '=':
return LE;
}
break;
case '>':
switch (relop[1]) {
case 0:
return GT;
case '=':
return GE;
}
break;
}
error (0, "internal: bad relop %s", relop);
return EQ;
}