mirror of
https://git.code.sf.net/p/quake/quakeforge
synced 2024-11-30 08:00:51 +00:00
170 lines
5.1 KiB
C
170 lines
5.1 KiB
C
/*
|
|
mathlib.h
|
|
|
|
Vector math library
|
|
|
|
Copyright (C) 1996-1997 Id Software, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
See the GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to:
|
|
|
|
Free Software Foundation, Inc.
|
|
59 Temple Place - Suite 330
|
|
Boston, MA 02111-1307, USA
|
|
|
|
$Id$
|
|
*/
|
|
|
|
#ifndef __mathlib_h
|
|
#define __mathlib_h
|
|
|
|
#include <math.h>
|
|
#include "QF/qtypes.h"
|
|
|
|
#ifndef M_PI
|
|
# define M_PI 3.14159265358979323846 // matches value in gcc v2 math.h
|
|
#endif
|
|
|
|
extern int nanmask;
|
|
extern const vec3_t vec3_origin;
|
|
|
|
#define IS_NAN(x) (((*(int *)&x)&nanmask)==nanmask)
|
|
|
|
#define DotProduct(a,b) ((a)[0]*(b)[0]+(a)[1]*(b)[1]+(a)[2]*(b)[2])
|
|
#define VectorSubtract(a,b,c) {(c)[0]=(a)[0]-(b)[0];(c)[1]=(a)[1]-(b)[1];(c)[2]=(a)[2]-(b)[2];}
|
|
#define VectorAdd(a,b,c) {(c)[0]=(a)[0]+(b)[0];(c)[1]=(a)[1]+(b)[1];(c)[2]=(a)[2]+(b)[2];}
|
|
#define VectorCopy(a,b) {(b)[0]=(a)[0];(b)[1]=(a)[1];(b)[2]=(a)[2];}
|
|
#define VectorMA(a,s,b,c) {(c)[0]=(a)[0]+(s)*(b)[0];(c)[1]=(a)[1]+(s)*(b)[1];(c)[2]=(a)[2]+(s)*(b)[2];}
|
|
#define VectorLength(a) sqrt(DotProduct(a, a))
|
|
|
|
#define VectorScale(a,b,c) {(c)[0]=(a)[0]*(b);(c)[1]=(a)[1]*(b);(c)[2]=(a)[2]*(b);}
|
|
#define VectorCompare(x, y) (((x)[0] == (y)[0]) && ((x)[1] == (y)[1]) && ((x)[2] == (y)[2]))
|
|
|
|
#define VectorIsZero(a) ((a)[0] == 0 && (a)[1] == 0 && (a)[2] == 0)
|
|
#define VectorZero(a) ((a)[2] = (a)[1] = (a)[0] = 0);
|
|
|
|
#define VectorBlend(v1,v2,b,v) \
|
|
{ \
|
|
(v)[0] = (v1)[0] * (1 - (b)) + (v2)[0] * (b); \
|
|
(v)[1] = (v1)[1] * (1 - (b)) + (v2)[1] * (b); \
|
|
(v)[2] = (v1)[2] * (1 - (b)) + (v2)[2] * (b); \
|
|
}
|
|
|
|
/*
|
|
* VectorDistance, the distance between two points.
|
|
* Yes, this is the same as sqrt(VectorSubtract then DotProduct),
|
|
* however that way would involve more vars, this is cheaper.
|
|
*/
|
|
#define VectorDistance_fast(a, b) ((((a)[0] - (b)[0]) * ((a)[0] - (b)[0])) + \
|
|
(((a)[1] - (b)[1]) * ((a)[1] - (b)[1])) + \
|
|
(((a)[2] - (b)[2]) * ((a)[2] - (b)[2])))
|
|
#define VectorDistance(a, b) sqrt(VectorDistance_fast(a, b))
|
|
|
|
|
|
#define qfrandom(MAX) ((float) MAX * (rand() * (1.0 / (RAND_MAX + 1.0))))
|
|
|
|
// up / down
|
|
#define PITCH 0
|
|
// left / right
|
|
#define YAW 1
|
|
// fall over
|
|
#define ROLL 2
|
|
|
|
vec_t _DotProduct (const vec3_t v1, const vec3_t v2);
|
|
void _VectorAdd (const vec3_t veca, const vec3_t vecb, vec3_t out);
|
|
void _VectorCopy (const vec3_t in, vec3_t out);
|
|
int _VectorCompare (const vec3_t v1, const vec3_t v2);
|
|
//vec_t _VectorLength (vec3_t v);
|
|
void _VectorMA (const vec3_t veca, float scale, const vec3_t vecb,
|
|
vec3_t vecc);
|
|
void _VectorScale (const vec3_t in, vec_t scale, vec3_t out);
|
|
void _VectorSubtract (const vec3_t veca, const vec3_t vecb, vec3_t out);
|
|
void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross);
|
|
float VectorNormalize (vec3_t v); // returns vector length
|
|
void VectorInverse (vec3_t v);
|
|
int Q_log2(int val);
|
|
|
|
void R_ConcatRotations (float in1[3][3], float in2[3][3], float out[3][3]);
|
|
void R_ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4]);
|
|
|
|
void FloorDivMod (double numer, double denom, int *quotient, int *rem);
|
|
fixed16_t Invert24To16(fixed16_t val);
|
|
fixed16_t Mul16_30(fixed16_t multiplier, fixed16_t multiplicand);
|
|
int GreatestCommonDivisor (int i1, int i2);
|
|
|
|
void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right,
|
|
vec3_t up);
|
|
void VectorVectors (const vec3_t forward, vec3_t right, vec3_t up);
|
|
int BoxOnPlaneSide (const vec3_t emins, const vec3_t emaxs,
|
|
struct mplane_s *plane);
|
|
float anglemod (float a);
|
|
|
|
void RotatePointAroundVector (vec3_t dst, const vec3_t axis,
|
|
const vec3_t point, float degrees);
|
|
|
|
#define BOX_ON_PLANE_SIDE(emins, emaxs, p) \
|
|
(((p)->type < 3)? \
|
|
( \
|
|
((p)->dist <= (emins)[(p)->type])? \
|
|
1 \
|
|
: \
|
|
( \
|
|
((p)->dist >= (emaxs)[(p)->type])? \
|
|
2 \
|
|
: \
|
|
3 \
|
|
) \
|
|
) \
|
|
: \
|
|
BoxOnPlaneSide( (emins), (emaxs), (p)))
|
|
|
|
#define PlaneDist(point,plane) ((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal))
|
|
#define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist)
|
|
|
|
|
|
extern mplane_t frustum[4];
|
|
|
|
#ifndef IMPLEMENT_R_Cull
|
|
extern inline
|
|
#endif
|
|
qboolean
|
|
R_CullBox (const vec3_t mins, const vec3_t maxs)
|
|
{
|
|
int i;
|
|
|
|
for (i=0 ; i < 4 ; i++)
|
|
if (BoxOnPlaneSide (mins, maxs, &frustum[i]) == 2)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
#ifndef IMPLEMENT_R_Cull
|
|
extern inline
|
|
#endif
|
|
qboolean
|
|
R_CullSphere (const vec3_t origin, const float radius)
|
|
{
|
|
int i;
|
|
float r;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
{
|
|
r = DotProduct (origin, frustum[i].normal) - frustum[i].dist;
|
|
if (r <= -radius)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#endif // __mathlib_h
|