quakeforge/tools/qfvis/source/fatpvs.c
Bill Currie 9f8a6f5d62 [qfvis] Initialize set pool arrays
The relatively recent changes to ALLOC missed the set pools used in fat
pvs calculations.
2023-07-18 11:27:06 +09:00

391 lines
9.4 KiB
C

/*
fatpvs.c
PVS PHS generator tool
Copyright (C) 2021 Bil Currie
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <string.h>
#include <stdlib.h>
#include "QF/bspfile.h"
#include "QF/heapsort.h"
#include "QF/pvsfile.h"
#include "QF/quakefs.h"
#include "QF/set.h"
#include "QF/sizebuf.h"
#include "QF/sys.h"
#include "tools/qfvis/include/options.h"
#include "tools/qfvis/include/vis.h"
typedef struct {
uint32_t visoffs;
uint32_t leafnum;
} leafvis_t;
typedef struct {
uint32_t first_leaf;
uint32_t num_leafs;
} leafmap_t;
static set_pool_t *set_pool;
static set_t *base_pvs;
static set_t *fat_pvs;
static leafvis_t *leafvis;
static leafmap_t *leafmap;
static sizebuf_t *cmp_pvs;
static uint32_t num_leafs;
static uint32_t num_clusters;
static uint32_t work_cluster;
typedef struct {
long pvs_visible;
long fat_visible;
long fat_bytes;
} fatstats_t;
fatstats_t fatstats;
static void
update_stats (fatstats_t *stats)
{
WRLOCK (stats_lock);
fatstats.pvs_visible += stats->pvs_visible;
fatstats.fat_visible += stats->fat_visible;
fatstats.fat_bytes += stats->fat_bytes;
UNLOCK (stats_lock);
}
static int
cluster_progress (void)
{
return work_cluster * 100 / num_clusters;
}
static unsigned
next_cluster (void)
{
unsigned leaf = ~0;
WRLOCK (global_lock);
progress_tick++;
if (work_cluster < num_clusters) {
leaf = work_cluster++;
}
UNLOCK (global_lock);
return leaf;
}
static inline void
decompress_vis (const byte *in, unsigned numleafs, set_t *pvs)
{
byte *out = (byte *) pvs->map;
byte *start = out;
int row, c;
row = (numleafs + 7) >> 3;
if (!in) { // no vis info, so make all visible
while (row) {
*out++ = 0xff;
row--;
}
} else {
do {
if (*in) {
*out++ = *in++;
continue;
}
c = in[1];
in += 2;
while (c) {
*out++ = 0;
c--;
}
} while (out - start < row);
}
while ((out - start) & (sizeof (set_bits_t) - 1)) {
*out++ = 0;
}
}
static void *
decompress_thread (void *d)
{
fatstats_t stats = { };
int thread = (intptr_t) d;
set_t vis = { };
if (num_leafs != num_clusters) {
vis = (set_t) SET_STATIC_INIT (num_leafs - 1, alloca);
}
while (1) {
unsigned cluster_num = next_cluster ();
if (working)
working[thread] = cluster_num;
if (cluster_num == ~0u) {
break;
}
byte *visdata = 0;
dleaf_t *leaf = &bsp->leafs[leafmap[cluster_num].first_leaf + 1];
if (leaf->visofs >= 0) {
visdata = bsp->visdata + leaf->visofs;
}
if (num_leafs == num_clusters) {
decompress_vis (visdata, num_leafs, &base_pvs[cluster_num]);
} else {
decompress_vis (visdata, num_leafs, &vis);
set_empty (&base_pvs[cluster_num]);
for (set_iter_t *iter = set_first_r (&set_pool[thread], &vis);
iter; iter = set_next_r (&set_pool[thread], iter)) {
set_add (&base_pvs[cluster_num], leafcluster[iter->element]);
}
}
stats.pvs_visible += set_count (&base_pvs[cluster_num]);
}
update_stats (&stats);
return 0;
}
static void *
fatten_thread (void *d)
{
fatstats_t stats = { };
int thread = (intptr_t) d;
while (1) {
unsigned cluster_num = next_cluster ();
if (working)
working[thread] = cluster_num;
if (cluster_num == ~0u) {
break;
}
set_assign (&fat_pvs[cluster_num], &base_pvs[cluster_num]);
for (set_iter_t *iter = set_first_r (&set_pool[thread],
&base_pvs[cluster_num]);
iter;
iter = set_next_r (&set_pool[thread], iter)) {
set_union (&fat_pvs[cluster_num], &base_pvs[iter->element]);
}
stats.fat_visible += set_count (&fat_pvs[cluster_num]);
set_difference (&fat_pvs[cluster_num], &base_pvs[cluster_num]);
}
update_stats (&stats);
return 0;
}
static void *
compress_thread (void *d)
{
fatstats_t stats = { };
int thread = (intptr_t) d;
bool rle = options.utf8;
set_t vis = { };
if (num_leafs != num_clusters) {
vis = (set_t) SET_STATIC_INIT (num_leafs - 1, alloca);
}
while (1) {
unsigned cluster_num = next_cluster ();
if (working)
working[thread] = cluster_num;
if (cluster_num == ~0u) {
break;
}
sizebuf_t *compressed = &cmp_pvs[cluster_num];
const byte *fat_bytes = (const byte *) fat_pvs[cluster_num].map;
if (num_leafs != num_clusters) {
fat_bytes = (const byte *) vis.map;
set_empty (&vis);
for (set_iter_t *iter = set_first_r (&set_pool[thread],
&fat_pvs[cluster_num]);
iter; iter = set_next_r (&set_pool[thread], iter)) {
for (uint32_t j = 0;
j < leafmap[iter->element].num_leafs; j++) {
uint32_t l = leafmap[iter->element].first_leaf + j;
set_add (&vis, leafvis[l].leafnum);
}
}
}
stats.fat_bytes += CompressRow (compressed, fat_bytes, num_leafs, rle);
}
update_stats (&stats);
return 0;
}
static int
leaf_compare (const void *_la, const void *_lb)
{
const leafvis_t *la = _la;
const leafvis_t *lb = _lb;
if (la->visoffs == lb->visoffs) {
return la->leafnum - lb->leafnum;
}
return la->visoffs - lb->visoffs;
}
static void
reconstruct_clusters (void)
{
leafvis = malloc (num_leafs * sizeof (leafvis_t));
int sorted = 1;
num_clusters = 1;
for (unsigned i = 0; i < num_leafs; i++) {
leafvis[i].visoffs = bsp->leafs[i + 1].visofs;
leafvis[i].leafnum = i;
if (i > 0) {
num_clusters += leafvis[i].visoffs != leafvis[i - 1].visoffs;
if (leafvis[i].visoffs < leafvis[i - 1].visoffs) {
sorted = 0;
}
}
}
if (!sorted) {
heapsort (leafvis, num_leafs, sizeof (leafvis_t), leaf_compare);
num_clusters = 1;
for (unsigned i = 1; i < num_leafs; i++) {
num_clusters += leafvis[i].visoffs != leafvis[i - 1].visoffs;
}
}
leafcluster = malloc (num_leafs * sizeof (uint32_t));
leafmap = calloc (num_clusters, sizeof (leafmap_t));
leafmap_t *lm = leafmap;
uint32_t offs = leafvis[0].visoffs;
for (unsigned i = 0; i < num_leafs; i++) {
if (leafvis[i].visoffs != offs) {
lm++;
lm->first_leaf = i;
offs = leafvis[i].visoffs;
}
leafcluster[leafvis[i].leafnum] = lm - leafmap;
lm->num_leafs++;
}
printf ("leafs : %u\n", num_leafs);
printf ("clusters: %u\n", num_clusters);
}
static void
allocate_data (void)
{
set_pool = malloc (sizeof (set_pool_t[options.threads]));
for (int i = 0; i < options.threads; i++) {
set_pool[i] = (set_pool_t) {
.set_blocks = DARRAY_STATIC_INIT (8),
.set_iter_blocks = DARRAY_STATIC_INIT (8),
};
}
base_pvs = malloc (num_clusters * sizeof (set_t));
fat_pvs = malloc (num_clusters * sizeof (set_t));
cmp_pvs = malloc (num_clusters * sizeof (sizebuf_t));
uint32_t visbytes = (num_leafs + 7) / 8;
// Worst case, RLE can add 50% to the bytes required (alternating zero
// and non-zero bytes: 0 x 0 y -> 0 1 x 0 1 y ...). Also, if the map is
// very tiny (8 leafs or fewer), there will be only one byte for vis, but
// if that byte is 0, an extra byte for the count is required.
visbytes = (visbytes * 3) / 2 + 1;
for (unsigned i = 0; i < num_clusters; i++) {
base_pvs[i] = (set_t) SET_STATIC_INIT (num_clusters - 1, malloc);
fat_pvs[i] = (set_t) SET_STATIC_INIT (num_clusters - 1, malloc);
cmp_pvs[i] = (sizebuf_t) {
.data = malloc (visbytes),
.maxsize = visbytes,
};
}
}
static void
write_pvs_file (void)
{
uint32_t offset = sizeof (pvsfile_t) + num_leafs * sizeof (uint32_t);
pvsfile_t *pvsfile = malloc (offset + fatstats.fat_bytes);
strncpy (pvsfile->magic, PVS_MAGIC, sizeof (pvsfile->magic));
pvsfile->version = PVS_VERSION;
pvsfile->md4_offset = 0; //FIXME add
pvsfile->flags = PVS_IS_FATPVS;
if (options.utf8) {
pvsfile->flags |= PVS_UTF8_RLE;
}
pvsfile->visleafs = num_leafs;
for (uint32_t i = 0; i < num_clusters; i++) {
unsigned size = cmp_pvs[i].cursize;
for (uint32_t j = 0; j < leafmap[i].num_leafs; j++) {
uint32_t l = leafmap[i].first_leaf + j;
pvsfile->visoffsets[leafvis[l].leafnum] = offset;
}
memcpy ((byte *) pvsfile + offset, cmp_pvs[i].data, size);
offset += size;
}
dstring_t *pvsname = dstring_new ();
dstring_copystr (pvsname, options.bspfile->str);
QFS_SetExtension (pvsname, ".pvs");
QFile *f = Qopen (pvsname->str, "wb");
if (!f) {
Sys_Error ("couldn't open %s for writing.", pvsname->str);
}
Qwrite (f, pvsfile, offset);
Qclose (f);
}
void
CalcFatPVS (void)
{
num_leafs = bsp->models[0].visleafs;
reconstruct_clusters ();
allocate_data ();
work_cluster = 0;
RunThreads ("Decompress", decompress_thread, cluster_progress);
work_cluster = 0;
RunThreads ("Fatten", fatten_thread, cluster_progress);
work_cluster = 0;
RunThreads ("Compress", compress_thread, cluster_progress);
printf ("Average clusters visible / fat visible / total: %d / %d / %d\n",
(int) (fatstats.pvs_visible / num_clusters),
(int) (fatstats.fat_visible / num_clusters), num_clusters);
printf ("Compressed fat vis size: %ld\n", fatstats.fat_bytes);
write_pvs_file ();
}