quakeforge/tools/qfcc/source/expr.c
2007-05-08 03:24:49 +00:00

2909 lines
66 KiB
C

/*
expr.c
expression construction and manipulations
Copyright (C) 2001 Bill Currie <bill@taniwha.org>
Author: Bill Currie <bill@taniwha.org>
Date: 2001/06/15
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
static __attribute__ ((used)) const char rcsid[] =
"$Id$";
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include <QF/dstring.h>
#include <QF/mathlib.h>
#include <QF/sys.h>
#include <QF/va.h>
#include "qfcc.h"
#include "class.h"
#include "def.h"
#include "emit.h"
#include "expr.h"
#include "function.h"
#include "idstuff.h"
#include "immediate.h"
#include "method.h"
#include "options.h"
#include "reloc.h"
#include "strpool.h"
#include "struct.h"
#include "type.h"
#include "qc-parse.h"
static expr_t *free_exprs;
int lineno_base;
etype_t qc_types[] = {
ev_void, // ex_error
ev_void, // ex_state
ev_void, // ex_bool
ev_void, // ex_label
ev_void, // ex_block
ev_void, // ex_expr
ev_void, // ex_uexpr
ev_void, // ex_def
ev_void, // ex_temp
ev_void, // ex_nil
ev_void, // ex_name
ev_string, // ex_string
ev_float, // ex_float
ev_vector, // ex_vector
ev_entity, // ex_entity
ev_field, // ex_field
ev_func, // ex_func
ev_pointer, // ex_pointer
ev_quat, // ex_quaternion
ev_integer, // ex_integer
ev_uinteger, // ex_uinteger
ev_short, // ex_short
};
type_t *ev_types[] = {
&type_void,
&type_string,
&type_float,
&type_vector,
&type_entity,
&type_field,
&type_function,
&type_pointer,
&type_quaternion,
&type_integer,
&type_uinteger,
&type_short,
&type_void, // FIXME what type?
&type_void, // FIXME what type?
&type_void, // FIXME what type?
&type_SEL,
&type_void, // FIXME what type?
};
expr_type expr_types[] = {
ex_nil, // ev_void
ex_string, // ev_string
ex_float, // ev_float
ex_vector, // ev_vector
ex_entity, // ev_entity
ex_field, // ev_field
ex_func, // ev_func
ex_pointer, // ev_pointer
ex_quaternion, // ev_quat
ex_integer, // ev_integer
ex_uinteger, // ev_uinteger
ex_short, // ev_short
ex_nil, // ev_struct
ex_nil, // ev_object
ex_nil, // ev_class
ex_nil, // ev_sel
ex_nil, // ev_array
};
void
convert_name (expr_t *e)
{
if (e->type == ex_name) {
const char *name = e->e.string_val;
def_t *d;
expr_t *new;
class_t *class;
class = get_class (name, 0);
if (class) {
e->type = ex_def;
e->e.def = class_pointer_def (class);
return;
}
d = get_def (NULL, name, current_scope, st_none);
if (d) {
if (d->global) {
new = class_ivar_expr (current_class, name);
if (new)
goto convert;
}
e->type = ex_def;
e->e.def = d;
return;
}
new = class_ivar_expr (current_class, name);
if (new)
goto convert;
new = get_enum (name);
if (new)
goto convert;
error (e, "Undeclared variable \"%s\".", name);
return;
convert:
e->type = new->type;
e->e = new->e;
}
}
type_t *
get_type (expr_t *e)
{
convert_name (e);
switch (e->type) {
case ex_label:
case ex_name:
case ex_error:
return 0; // something went very wrong
case ex_bool:
if (options.code.progsversion == PROG_ID_VERSION)
return &type_float;
return &type_integer;
case ex_nil:
case ex_state:
return &type_void;
case ex_block:
if (e->e.block.result)
return get_type (e->e.block.result);
return &type_void;
case ex_expr:
case ex_uexpr:
return e->e.expr.type;
case ex_def:
return e->e.def->type;
case ex_temp:
return e->e.temp.type;
case ex_pointer:
return pointer_type (e->e.pointer.type);
case ex_integer:
if (options.code.progsversion == PROG_ID_VERSION) {
e->type = ex_float;
e->e.float_val = e->e.integer_val;
}
// fall through
case ex_string:
case ex_float:
case ex_vector:
case ex_entity:
case ex_field:
case ex_func:
case ex_quaternion:
case ex_uinteger:
case ex_short:
return ev_types[qc_types[e->type]];
}
return 0;
}
etype_t
extract_type (expr_t *e)
{
type_t *type = get_type (e);
if (type)
return type->type;
return ev_type_count;
}
const char *
get_op_string (int op)
{
switch (op) {
case PAS: return ".=";
case OR: return "||";
case AND: return "&&";
case EQ: return "==";
case NE: return "!=";
case LE: return "<=";
case GE: return ">=";
case LT: return "<";
case GT: return ">";
case '=': return "=";
case '+': return "+";
case '-': return "-";
case '*': return "*";
case '/': return "/";
case '%': return "%";
case '&': return "&";
case '|': return "|";
case '^': return "^";
case '~': return "~";
case '!': return "!";
case SHL: return "<<";
case SHR: return ">>";
case '.': return ".";
case 'i': return "<if>";
case 'n': return "<ifnot>";
case IFBE: return "<ifbe>";
case IFB: return "<ifb>";
case IFAE: return "<ifae>";
case IFA: return "<ifa>";
case 'g': return "<goto>";
case 'r': return "<return>";
case 'b': return "<bind>";
case 's': return "<state>";
case 'c': return "<call>";
case 'C': return "<cast>";
case 'M': return "<move>";
default:
return "unknown";
}
}
expr_t *
type_mismatch (expr_t *e1, expr_t *e2, int op)
{
etype_t t1, t2;
t1 = extract_type (e1);
t2 = extract_type (e2);
if (1) {
print_type (get_type (e1));
print_type (get_type (e2));
printf ("\n%p %p\n", get_type (e1), get_type (e2));
}
return error (e1, "type mismatch: %s %s %s",
pr_type_name[t1], get_op_string (op), pr_type_name[t2]);
}
static void
check_initialized (expr_t *e)
{
const char *name;
if (e->type == ex_def
&& !(e->e.def->type->type == ev_func
&& !e->e.def->local)
&& !(e->e.def->type->type == ev_struct)
&& !e->e.def->external
&& !e->e.def->initialized) {
name = e->e.def->name;
if (options.warnings.uninited_variable && !e->e.def->suppress) {
if (options.code.local_merging)
warning (e, "%s may be used uninitialized", name);
else
notice (e, "%s may be used uninitialized", name);
}
e->e.def->suppress = 1; // only warn once
if (options.traditional && options.code.local_merging
&& !e->e.def->set) {
def_t *def = e->e.def;
e->e.def->set = 1; // only auto-init once
e = assign_expr (e, new_nil_expr ());
e->file = def->file;
e->line = def->line;
e->next = current_func->var_init;
current_func->var_init = e;
notice (e, "auto-initializing %s", name);
}
}
}
void
inc_users (expr_t *e)
{
if (e && e->type == ex_temp)
e->e.temp.users++;
else if (e && e->type == ex_block)
inc_users (e->e.block.result);
}
expr_t *
new_expr (void)
{
expr_t *e;
ALLOC (16384, expr_t, exprs, e);
e->line = pr.source_line;
e->file = pr.source_file;
return e;
}
const char *
new_label_name (void)
{
static int label = 0;
int lnum = ++label;
const char *fname = current_func->def->name;
char *lname;
lname = nva ("$%s_%d", fname, lnum);
SYS_CHECKMEM (lname);
return lname;
}
static expr_t *
new_error_expr (void)
{
expr_t *e = new_expr ();
e->type = ex_error;
return e;
}
expr_t *
new_state_expr (expr_t *frame, expr_t *think, expr_t *step)
{
expr_t *s = new_expr ();
s->type = ex_state;
s->e.state.frame = frame;
s->e.state.think = think;
s->e.state.step = step;
return s;
}
expr_t *
new_bool_expr (ex_list_t *true_list, ex_list_t *false_list, expr_t *e)
{
expr_t *b = new_expr ();
b->type = ex_bool;
b->e.bool.true_list = true_list;
b->e.bool.false_list = false_list;
b->e.bool.e = e;
return b;
}
expr_t *
new_label_expr (void)
{
expr_t *l = new_expr ();
l->type = ex_label;
l->e.label.name = new_label_name ();
l->e.label.next = pr.labels;
pr.labels = &l->e.label;
return l;
}
expr_t *
new_block_expr (void)
{
expr_t *b = new_expr ();
b->type = ex_block;
b->e.block.head = 0;
b->e.block.tail = &b->e.block.head;
return b;
}
expr_t *
new_binary_expr (int op, expr_t *e1, expr_t *e2)
{
expr_t *e = new_expr ();
if (e1->type == ex_error)
return e1;
if (e2 && e2->type == ex_error)
return e2;
inc_users (e1);
inc_users (e2);
e->type = ex_expr;
e->e.expr.op = op;
e->e.expr.e1 = e1;
e->e.expr.e2 = e2;
return e;
}
expr_t *
new_unary_expr (int op, expr_t *e1)
{
expr_t *e = new_expr ();
if (e1 && e1->type == ex_error)
return e1;
inc_users (e1);
e->type = ex_uexpr;
e->e.expr.op = op;
e->e.expr.e1 = e1;
return e;
}
expr_t *
new_def_expr (def_t *def)
{
expr_t *e = new_expr ();
e->type = ex_def;
e->e.def = def;
return e;
}
expr_t *
new_temp_def_expr (type_t *type)
{
expr_t *e = new_expr ();
e->type = ex_temp;
e->e.temp.type = type;
return e;
}
expr_t *
new_nil_expr (void)
{
expr_t *e = new_expr ();
e->type = ex_nil;
return e;
}
expr_t *
new_name_expr (const char *name)
{
expr_t *e = new_expr ();
e->type = ex_name;
e->e.string_val = name;
return e;
}
expr_t *
new_string_expr (const char *string_val)
{
expr_t *e = new_expr ();
e->type = ex_string;
e->e.string_val = string_val;
return e;
}
expr_t *
new_float_expr (float float_val)
{
expr_t *e = new_expr ();
e->type = ex_float;
e->e.float_val = float_val;
return e;
}
expr_t *
new_vector_expr (float *vector_val)
{
expr_t *e = new_expr ();
e->type = ex_vector;
memcpy (e->e.vector_val, vector_val, sizeof (e->e.vector_val));
return e;
}
expr_t *
new_entity_expr (int entity_val)
{
expr_t *e = new_expr ();
e->type = ex_entity;
e->e.entity_val = entity_val;
return e;
}
expr_t *
new_field_expr (int field_val, type_t *type, def_t *def)
{
expr_t *e = new_expr ();
e->type = ex_field;
e->e.pointer.val = field_val;
e->e.pointer.type = type;
e->e.pointer.def = def;
return e;
}
expr_t *
new_func_expr (int func_val)
{
expr_t *e = new_expr ();
e->type = ex_func;
e->e.func_val = func_val;
return e;
}
expr_t *
new_pointer_expr (int val, type_t *type, def_t *def)
{
expr_t *e = new_expr ();
e->type = ex_pointer;
e->e.pointer.val = val;
e->e.pointer.type = type;
e->e.pointer.def = def;
return e;
}
expr_t *
new_quaternion_expr (float *quaternion_val)
{
expr_t *e = new_expr ();
e->type = ex_quaternion;
memcpy (e->e.quaternion_val, quaternion_val, sizeof (e->e.quaternion_val));
return e;
}
expr_t *
new_integer_expr (int integer_val)
{
expr_t *e = new_expr ();
e->type = ex_integer;
e->e.integer_val = integer_val;
return e;
}
expr_t *
new_uinteger_expr (unsigned int uinteger_val)
{
expr_t *e = new_expr ();
e->type = ex_uinteger;
e->e.uinteger_val = uinteger_val;
return e;
}
expr_t *
new_short_expr (short short_val)
{
expr_t *e = new_expr ();
e->type = ex_short;
e->e.short_val = short_val;
return e;
}
int
is_constant (expr_t *e)
{
if (e->type >= ex_string
|| (e->type == ex_def && e->e.def->constant))
return 1;
return 0;
}
expr_t *
constant_expr (expr_t *var)
{
if (var->type != ex_def || !var->e.def->constant)
return var;
switch (var->e.def->type->type) {
case ev_string:
return new_string_expr (G_GETSTR (var->e.def->ofs));
case ev_float:
return new_float_expr (G_FLOAT (var->e.def->ofs));
case ev_vector:
return new_vector_expr (G_VECTOR (var->e.def->ofs));
case ev_field:
return new_field_expr (G_INT (var->e.def->ofs), var->e.def->type,
var->e.def);
case ev_integer:
return new_integer_expr (G_INT (var->e.def->ofs));
case ev_uinteger:
return new_uinteger_expr (G_INT (var->e.def->ofs));
default:
return var;
}
}
expr_t *
new_bind_expr (expr_t *e1, expr_t *e2)
{
expr_t *e;
if (!e2 || e2->type != ex_temp) {
error (e1, "internal error");
abort ();
}
e = new_expr ();
e->type = ex_expr;
e->e.expr.op = 'b';
e->e.expr.e1 = e1;
e->e.expr.e2 = e2;
e->e.expr.type = get_type (e2);
return e;
}
expr_t *
new_self_expr (void)
{
def_t *def = get_def (&type_entity, ".self", pr.scope, st_extern);
def_initialized (def);
return new_def_expr (def);
}
expr_t *
new_this_expr (void)
{
type_t *type = field_type (&type_id);
def_t *def = get_def (type, ".this", pr.scope, st_extern);
def_initialized (def);
def->nosave = 1;
return new_def_expr (def);
}
static expr_t *
param_expr (const char *name, type_t *type)
{
def_t *def = get_def (&type_param, name, pr.scope, st_extern);
expr_t *def_expr;
def_initialized (def);
def->nosave = 1;
def_expr = new_def_expr (def);
return unary_expr ('.', address_expr (def_expr, 0, type));
}
expr_t *
new_ret_expr (type_t *type)
{
return param_expr (".return", type);
}
expr_t *
new_param_expr (type_t *type, int num)
{
return param_expr (va (".param_%d", num), type);
}
expr_t *
new_move_expr (expr_t *e1, expr_t *e2, type_t *type)
{
expr_t *e = new_binary_expr ('M', e1, e2);
e->e.expr.type = type;
return e;
}
expr_t *
append_expr (expr_t *block, expr_t *e)
{
if (block->type != ex_block)
abort ();
if (!e || e->type == ex_error)
return block;
if (e->next) {
error (e, "append_expr: expr loop detected");
abort ();
}
*block->e.block.tail = e;
block->e.block.tail = &e->next;
return block;
}
void
print_expr (expr_t *e)
{
printf (" ");
if (!e) {
printf ("(nil)");
return;
}
switch (e->type) {
case ex_error:
printf ("(error)");
break;
case ex_state:
printf ("[");
print_expr (e->e.state.frame);
printf (",");
print_expr (e->e.state.think);
printf (",");
print_expr (e->e.state.step);
printf ("]");
break;
case ex_bool:
printf ("bool"); //FIXME
break;
case ex_label:
printf ("%s", e->e.label.name);
break;
case ex_block:
if (e->e.block.result) {
print_expr (e->e.block.result);
printf ("=");
}
printf ("{\n");
for (e = e->e.block.head; e; e = e->next) {
print_expr (e);
puts ("");
}
printf ("}");
break;
case ex_expr:
print_expr (e->e.expr.e1);
if (e->e.expr.op == 'c') {
expr_t *p = e->e.expr.e2;
printf ("(");
while (p) {
print_expr (p);
if (p->next)
printf (",");
p = p->next;
}
printf (")");
} else if (e->e.expr.op == 'b') {
printf (" <-->");
print_expr (e->e.expr.e2);
} else {
print_expr (e->e.expr.e2);
printf (" %s", get_op_string (e->e.expr.op));
}
break;
case ex_uexpr:
print_expr (e->e.expr.e1);
printf (" u%s", get_op_string (e->e.expr.op));
break;
case ex_def:
if (e->e.def->name)
printf ("%s", e->e.def->name);
if (!e->e.def->global) {
printf ("<%d>", e->e.def->ofs);
} else {
printf ("[%d]", e->e.def->ofs);
}
break;
case ex_temp:
printf ("(");
print_expr (e->e.temp.expr);
printf (":");
if (e->e.temp.def) {
if (e->e.temp.def->name) {
printf ("%s", e->e.temp.def->name);
} else {
printf ("<%d>", e->e.temp.def->ofs);
}
} else {
printf ("<>");
}
printf (":%s:%d)@", pr_type_name[e->e.temp.type->type],
e->e.temp.users);
break;
case ex_nil:
printf ("NULL");
break;
case ex_string:
case ex_name:
printf ("\"%s\"", e->e.string_val);
break;
case ex_float:
printf ("%g", e->e.float_val);
break;
case ex_vector:
printf ("'%g", e->e.vector_val[0]);
printf (" %g", e->e.vector_val[1]);
printf (" %g'", e->e.vector_val[2]);
break;
case ex_quaternion:
printf ("'%g", e->e.quaternion_val[0]);
printf (" %g", e->e.quaternion_val[1]);
printf (" %g", e->e.quaternion_val[2]);
printf (" %g'", e->e.quaternion_val[3]);
break;
case ex_pointer:
printf ("(%s)[%d]", pr_type_name[e->e.pointer.type->type],
e->e.pointer.val);
break;
case ex_field:
printf ("%d", e->e.pointer.val);
break;
case ex_entity:
case ex_func:
case ex_integer:
printf ("%d", e->e.integer_val);
break;
case ex_uinteger:
printf ("%u", e->e.uinteger_val);
break;
case ex_short:
printf ("%d", e->e.short_val);
break;
}
}
static expr_t *
field_expr (expr_t *e1, expr_t *e2)
{
type_t *t1, *t2;
expr_t *e;
def_t *d;
int i;
struct_field_t *field;
class_t *class;
struct_t *strct;
if (e1->type == ex_error)
return e1;
t1 = get_type (e1);
switch (t1->type) {
case ev_struct:
case ev_class:
check_initialized (e1);
if (e2->type != ex_name)
return error (e2, "structure field name expected");
if (t1->type == ev_struct)
strct = t1->s.strct;
else
strct = t1->s.class->ivars;
field = struct_find_field (strct, e2->e.string_val);
if (!field)
return error (e2, "structure has no field %s",
e2->e.string_val);
e2->type = ex_short;
e2->e.short_val = field->offset;
e = unary_expr ('.', address_expr (e1, e2, field->type));
return e;
case ev_pointer:
check_initialized (e1);
switch (t1->aux_type->type) {
case ev_struct:
if (e2->type == ex_name) {
field = struct_find_field (t1->aux_type->s.strct,
e2->e.string_val);
if (!field)
return error (e2, "structure has no field %s",
e2->e.string_val);
e2->type = ex_short;
e2->e.short_val = field->offset;
t1 = pointer_type (field->type);
}
break;
case ev_object:
case ev_class:
if (e2->type == ex_name) {
int protected;
class = t1->aux_type->s.class;
protected = class_access (current_class, class);
field = class_find_ivar (class, protected,
e2->e.string_val);
if (!field)
return new_error_expr ();
e2->type = ex_short;
e2->e.short_val = field->offset;
t1 = pointer_type (field->type);
}
break;
default:
break;
}
if (e1->type == ex_pointer) {
if (e2->type == ex_short) {
e1->e.pointer.val += e2->e.short_val;
} else if (e2->type == ex_integer) {
e1->e.pointer.val += e2->e.integer_val;
} else if (e2->type == ex_uinteger) {
e1->e.pointer.val += e2->e.uinteger_val;
} else {
break;
}
e1->e.pointer.type = t1->aux_type;
return unary_expr ('.', e1);
} else {
e = new_binary_expr ('&', e1, e2);
e->e.expr.type = t1;
return unary_expr ('.', e);
}
break;
case ev_entity:
check_initialized (e1);
if (e2->type == ex_name) {
def_t *d = field_def (e2->e.string_val);
if (!d) {
t2 = get_type (e2);
if (e2->type == ex_error)
return e2;
break;
}
e2 = new_def_expr (d);
t2 = get_type (e2);
e = new_binary_expr ('.', e1, e2);
e->e.expr.type = t2->aux_type;
return e;
} else {
t2 = get_type (e2);
if (e2->type == ex_error)
return e2;
if (t2->type == ev_field) {
e = new_binary_expr ('.', e1, e2);
e->e.expr.type = t2->aux_type;
return e;
}
}
break;
case ev_vector:
case ev_quat:
if (e2->type == ex_name) {
if (t1->type == ev_quat) {
field = struct_find_field (quaternion_struct,
e2->e.string_val);
if (!field)
return error (e2, "quaternion has no field %s",
e2->e.string_val);
} else {
field = struct_find_field (vector_struct,
e2->e.string_val);
if (!field)
return error (e2, "vector has no field %s",
e2->e.string_val);
}
switch (e1->type) {
case ex_expr:
if (e1->e.expr.op == '.'
&& extract_type (e1->e.expr.e1) == ev_entity) {
int ofs;
def_t *def;
type_t *type;
if (e1->e.expr.e2->type == ex_def) {
ofs = 0;
def = e1->e.expr.e2->e.def;
type = def->type;
} else if (e1->e.expr.e2->type == ex_field) {
ofs = e1->e.expr.e2->e.pointer.val;
def = e1->e.expr.e2->e.pointer.def;
type = e1->e.expr.e2->e.pointer.type;
} else
break;
if (field->offset) {
e = new_field_expr (ofs + field->offset,
type, def);
e = new_binary_expr ('.', e1->e.expr.e1, e);
} else {
e = e1;
}
e->e.expr.type = field->type;
return e;
}
break;
case ex_uexpr:
if (e1->e.expr.op == '.') {
if (e1->e.expr.e1->type == ex_pointer) {
e = e1->e.expr.e1;
e->e.pointer.val += field->offset;
e->e.pointer.type = field->type;
e1->e.expr.type = field->type;
return e1;
} else if (extract_type (e1->e.expr.e1)
== ev_pointer) {
e = new_integer_expr (field->offset);
e = address_expr (e1, e, field->type);
return unary_expr ('.', e);
}
}
break;
case ex_block:
print_expr (e1); puts ("");
#if 0
e1 = new_bind_expr (e1, new_temp_def_expr (t1));
e2 = new_short_expr (field->offset);
e = address_expr (e1, e2, field->type);
e = unary_expr ('.', e);
return e;
#endif
break;
case ex_def:
if (t1->type == ev_quat) {
e = new_pointer_expr (field->offset, field->type,
e1->e.def);
e = unary_expr ('.', e);
return e;
} else {
d = e1->e.def->def_next;
for (i = field->offset; i; i--)
d = d->def_next;
e = new_def_expr (d);
}
return e;
case ex_vector:
e = new_float_expr (e1->e.vector_val[field->offset]);
return e;
case ex_quaternion:
if (field->type == &type_float)
e = new_float_expr (*(e1->e.quaternion_val
+ field->offset));
else
e = new_vector_expr (e1->e.quaternion_val
+ field->offset);
return e;
default:
break;
}
}
break;
default:
break;
}
return type_mismatch (e1, e2, '.');
}
expr_t *
test_expr (expr_t *e, int test)
{
static float zero[4] = {0, 0, 0, 0};
expr_t *new = 0;
etype_t type;
if (e->type == ex_error)
return e;
check_initialized (e);
if (!test)
return unary_expr ('!', e);
type = extract_type (e);
if (e->type == ex_error)
return e;
switch (type) {
case ev_type_count:
error (e, "internal error");
abort ();
case ev_void:
if (options.traditional) {
if (options.warnings.traditional)
warning (e, "void has no value");
return e;
}
return error (e, "void has no value");
case ev_string:
new = new_string_expr (0);
break;
case ev_uinteger:
case ev_integer:
case ev_short:
return e;
case ev_float:
if (options.code.fast_float
|| options.code.progsversion == PROG_ID_VERSION)
return e;
new = new_float_expr (0);
break;
case ev_vector:
new = new_vector_expr (zero);
break;
case ev_entity:
new = new_entity_expr (0);
break;
case ev_field:
new = new_field_expr (0, 0, 0);
break;
case ev_func:
new = new_func_expr (0);
break;
case ev_pointer:
new = new_nil_expr ();
break;
case ev_quat:
new = new_quaternion_expr (zero);
break;
case ev_struct:
case ev_object:
case ev_class:
case ev_sel:
case ev_array:
return error (e, "%s cannot be tested", pr_type_name[type]);
}
new->line = e->line;
new->file = e->file;
new = binary_expr (NE, e, new);
new->line = e->line;
new->file = e->file;
return new;
}
void
backpatch (ex_list_t *list, expr_t *label)
{
int i;
expr_t *e;
if (!list)
return;
for (i = 0; i < list->size; i++) {
e = list->e[i];
if (e->type == ex_uexpr && e->e.expr.op == 'g')
e->e.expr.e1 = label;
else if (e->type == ex_expr && (e->e.expr.op == 'i'
|| e->e.expr.op == 'n'))
e->e.expr.e2 = label;
else {
error (e, "internal compiler error");
abort ();
}
}
}
static ex_list_t *
merge (ex_list_t *l1, ex_list_t *l2)
{
ex_list_t *m;
if (!l1 && !l2) {
error (0, "internal error");
abort ();
}
if (!l2)
return l1;
if (!l1)
return l2;
m = malloc ((size_t)&((ex_list_t *)0)->e[l1->size + l2->size]);
m->size = l1->size + l2->size;
memcpy (m->e, l1->e, l1->size * sizeof (expr_t *));
memcpy (m->e + l1->size, l2->e, l2->size * sizeof (expr_t *));
return m;
}
static ex_list_t *
make_list (expr_t *e)
{
ex_list_t *m;
m = malloc ((size_t)&((ex_list_t *) 0)->e[1]);
m->size = 1;
m->e[0] = e;
return m;
}
expr_t *
convert_bool (expr_t *e, int block)
{
expr_t *b;
if (e->type == ex_expr && (e->e.expr.op == '=' || e->e.expr.op == PAS)
&& !e->paren) {
if (options.warnings.precedence)
warning (e, "suggest parentheses around assignment "
"used as truth value");
}
if (e->type == ex_uexpr && e->e.expr.op == '!') {
e = convert_bool (e->e.expr.e1, 0);
if (e->type == ex_error)
return e;
e = unary_expr ('!', e);
}
if (e->type != ex_bool) {
e = test_expr (e, 1);
if (e->type == ex_error)
return e;
if (e->type == ex_integer) {
b = new_unary_expr ('g', 0);
if (e->e.integer_val)
e = new_bool_expr (make_list (b), 0, b);
else
e = new_bool_expr (0, make_list (b), b);
} else {
b = new_block_expr ();
append_expr (b, new_binary_expr ('i', e, 0));
append_expr (b, new_unary_expr ('g', 0));
e = new_bool_expr (make_list (b->e.block.head),
make_list (b->e.block.head->next), b);
}
}
if (block && e->e.bool.e->type != ex_block) {
expr_t *block = new_block_expr ();
append_expr (block, e->e.bool.e);
e->e.bool.e = block;
}
return e;
}
static expr_t *
convert_from_bool (expr_t *e, type_t *type)
{
expr_t *zero;
expr_t *one;
expr_t *cond;
if (type == &type_float) {
one = new_float_expr (1);
zero = new_float_expr (0);
} else if (type == &type_integer) {
one = new_integer_expr (1);
zero = new_integer_expr (0);
} else if (type == &type_uinteger) {
one = new_uinteger_expr (1);
zero = new_uinteger_expr (0);
} else {
return error (e, "can't convert from bool value");
}
cond = new_expr ();
*cond = *e;
cond->next = 0;
cond = conditional_expr (cond, one, zero);
e->type = cond->type;
e->e = cond->e;
return e;
}
expr_t *
bool_expr (int op, expr_t *label, expr_t *e1, expr_t *e2)
{
expr_t *block;
if (!options.code.short_circuit)
return binary_expr (op, e1, e2);
e1 = convert_bool (e1, 0);
if (e1->type == ex_error)
return e1;
e2 = convert_bool (e2, 0);
if (e2->type == ex_error)
return e2;
block = new_block_expr ();
append_expr (block, e1);
append_expr (block, label);
append_expr (block, e2);
switch (op) {
case OR:
backpatch (e1->e.bool.false_list, label);
return new_bool_expr (merge (e1->e.bool.true_list,
e2->e.bool.true_list),
e2->e.bool.false_list, block);
break;
case AND:
backpatch (e1->e.bool.true_list, label);
return new_bool_expr (e2->e.bool.true_list,
merge (e1->e.bool.false_list,
e2->e.bool.false_list), block);
break;
}
error (e1, "internal error");
abort ();
}
void
convert_int (expr_t *e)
{
e->type = ex_float;
e->e.float_val = e->e.integer_val;
}
void
convert_uint (expr_t *e)
{
e->type = ex_float;
e->e.float_val = e->e.uinteger_val;
}
void
convert_short (expr_t *e)
{
e->type = ex_float;
e->e.float_val = e->e.short_val;
}
void
convert_uint_int (expr_t *e)
{
e->type = ex_integer;
e->e.integer_val = e->e.uinteger_val;
}
void
convert_int_uint (expr_t *e)
{
e->type = ex_uinteger;
e->e.uinteger_val = e->e.integer_val;
}
void
convert_short_int (expr_t *e)
{
e->type = ex_integer;
e->e.integer_val = e->e.short_val;
}
void
convert_short_uint (expr_t *e)
{
e->type = ex_uinteger;
e->e.uinteger_val = e->e.short_val;
}
static void
convert_nil (expr_t *e, type_t *t)
{
e->type = expr_types[t->type];
if (e->type == ex_pointer)
e->e.pointer.type = &type_void;
}
int
is_compare (int op)
{
if (op == EQ || op == NE || op == LE || op == GE || op == LT || op == GT
|| op == '>' || op == '<')
return 1;
return 0;
}
int
is_logic (int op)
{
if (op == OR || op == AND)
return 1;
return 0;
}
static expr_t *
check_precedence (int op, expr_t *e1, expr_t *e2)
{
if (e1->type == ex_uexpr && e1->e.expr.op == '!' && !e1->paren) {
if (options.traditional) {
if (op != AND && op != OR && op != '=') {
notice (e1, "precedence of `!' and `%s' inverted for "
"traditional code", get_op_string (op));
e1->e.expr.e1->paren = 1;
return unary_expr ('!', binary_expr (op, e1->e.expr.e1, e2));
}
} else if (op == '&' || op == '|') {
if (options.warnings.precedence)
warning (e1, "ambiguous logic. Suggest explicit parentheses "
"with expressions involving ! and %s",
get_op_string (op));
}
}
if (options.traditional) {
if (e2->type == ex_expr && !e2->paren) {
if (((op == '&' || op == '|')
&& (e2->e.expr.op == '*' || e2->e.expr.op == '/'
|| e2->e.expr.op == '+' || e2->e.expr.op == '-'
|| is_compare (e2->e.expr.op)))
|| (op == '='
&& (e2->e.expr.op == OR || e2->e.expr.op == AND))) {
notice (e1, "precedence of `%s' and `%s' inverted for "
"traditional code", get_op_string (op),
get_op_string (e2->e.expr.op));
e1 = binary_expr (op, e1, e2->e.expr.e1);
e1->paren = 1;
return binary_expr (e2->e.expr.op, e1, e2->e.expr.e2);
}
if (((op == EQ || op == NE) && is_compare (e2->e.expr.op))
|| (op == OR && e2->e.expr.op == AND)
|| (op == '|' && e2->e.expr.op == '&')) {
notice (e1, "precedence of `%s' raised to `%s' for "
"traditional code", get_op_string (op),
get_op_string (e2->e.expr.op));
e1 = binary_expr (op, e1, e2->e.expr.e1);
e1->paren = 1;
return binary_expr (e2->e.expr.op, e1, e2->e.expr.e2);
}
} else if (e1->type == ex_expr && !e1->paren) {
if (((op == '&' || op == '|')
&& (e1->e.expr.op == '*' || e1->e.expr.op == '/'
|| e1->e.expr.op == '+' || e1->e.expr.op == '-'
|| is_compare (e1->e.expr.op)))
|| (op == '='
&& (e1->e.expr.op == OR || e1->e.expr.op == AND))) {
notice (e1, "precedence of `%s' and `%s' inverted for "
"traditional code", get_op_string (op),
get_op_string (e1->e.expr.op));
e2 = binary_expr (op, e1->e.expr.e2, e2);
e2->paren = 1;
return binary_expr (e1->e.expr.op, e1->e.expr.e1, e2);
}
}
} else {
if (e2->type == ex_expr && !e2->paren) {
if ((op == '&' || op == '|' || op == '^')
&& is_compare (e2->e.expr.op)) {
if (options.warnings.precedence)
warning (e2, "suggest parentheses around comparison in "
"operand of %c", op);
}
}
}
return 0;
}
static int
has_function_call (expr_t *e)
{
switch (e->type) {
case ex_bool:
return has_function_call (e->e.bool.e);
case ex_block:
if (e->e.block.is_call)
return 1;
for (e = e->e.block.head; e; e = e->next)
if (has_function_call (e))
return 1;
return 0;
case ex_expr:
if (e->e.expr.op == 'c')
return 1;
return (has_function_call (e->e.expr.e1)
|| has_function_call (e->e.expr.e2));
case ex_uexpr:
if (e->e.expr.op != 'g')
return has_function_call (e->e.expr.e1);
default:
return 0;
}
}
expr_t *
binary_expr (int op, expr_t *e1, expr_t *e2)
{
type_t *t1, *t2;
type_t *type = 0;
expr_t *e;
if (e1->type == ex_error)
return e1;
if (e2->type == ex_error)
return e2;
convert_name (e1);
if (e1->type == ex_block && e1->e.block.is_call
&& has_function_call (e2) && e1->e.block.result) {
e = new_temp_def_expr (get_type (e1->e.block.result));
inc_users (e); // for the block itself
e1 = assign_expr (e, e1);
}
if (op == '.')
return field_expr (e1, e2);
check_initialized (e1);
convert_name (e2);
check_initialized (e2);
if (op == OR || op == AND) {
e1 = test_expr (e1, true);
e2 = test_expr (e2, true);
}
if (e1->type == ex_error)
return e1;
if (e2->type == ex_error)
return e2;
e1 = constant_expr (e1);
e2 = constant_expr (e2);
t1 = get_type (e1);
t2 = get_type (e2);
if (!t1 || !t2) {
error (e1, "internal error");
abort ();
}
if (op == EQ || op == NE) {
if (e1->type == ex_nil) {
t1 = t2;
convert_nil (e1, t1);
} else if (e2->type == ex_nil) {
t2 = t1;
convert_nil (e2, t2);
}
}
if (e1->type == ex_bool)
e1 = convert_from_bool (e1, t2);
if (e2->type == ex_bool)
e2 = convert_from_bool (e2, t1);
if (e1->type == ex_short) {
if (t2 == &type_integer) {
convert_short_int (e1);
t1 = &type_integer;
} else if (t2 == &type_uinteger) {
convert_short_uint (e1);
t1 = &type_uinteger;
}
}
if (e2->type == ex_short) {
if (t1 == &type_integer) {
convert_short_int (e2);
t2 = &type_integer;
} else if (t1 == &type_uinteger) {
convert_short_uint (e2);
t2 = &type_uinteger;
}
}
if (e1->type == ex_integer) {
if (t2 == &type_float
|| t2 == &type_vector
|| t2 == &type_quaternion) {
convert_int (e1);
t1 = &type_float;
} else if (t2 == &type_uinteger) {
convert_int_uint (e1);
t1 = &type_uinteger;
}
} else if (e1->type == ex_uinteger) {
if (t2 == &type_float
|| t2 == &type_vector
|| t2 == &type_quaternion) {
convert_uint (e1);
t1 = &type_float;
} else if (t2 == &type_integer) {
convert_uint_int (e1);
t1 = &type_integer;
}
} else if (e2->type == ex_integer) {
if (t1 == &type_float
|| t1 == &type_vector
|| t1 == &type_quaternion) {
convert_int (e2);
t2 = &type_float;
} else if (t1 == &type_uinteger) {
convert_int_uint (e2);
t2 = &type_uinteger;
}
} else if (e2->type == ex_uinteger) {
if (t1 == &type_float
|| t1 == &type_vector
|| t1 == &type_quaternion) {
convert_uint (e2);
t2 = &type_float;
} else if (t1 == &type_integer) {
convert_uint_int (e2);
t2 = &type_integer;
}
}
if ((e = check_precedence (op, e1, e2)))
return e;
if (t1 != t2) {
switch (t1->type) {
case ev_float:
if (t2 == &type_vector || t2 == &type_quaternion) {
type = &type_vector;
} else {
type = &type_float;
}
break;
case ev_vector:
if (t2 == &type_quaternion) {
type = &type_quaternion;
} else {
type = &type_vector;
}
break;
case ev_field:
if (t1->aux_type == t2) {
type = t1->aux_type;
} else {
goto type_mismatch;
}
break;
case ev_func:
if (e1->type == ex_func && !e1->e.func_val) {
type = t2;
} else if (e2->type == ex_func && !e2->e.func_val) {
type = t1;
} else {
goto type_mismatch;
}
break;
case ev_pointer:
if (!type_assignable (t1, t2) && !type_assignable (t2, t1))
goto type_mismatch;
type = t1;
break;
default:
type_mismatch:
type = t1;
break;
//return type_mismatch (e1, e2, op);
}
} else {
type = t1;
}
if (is_compare (op) || is_logic (op)) {
if (options.code.progsversion > PROG_ID_VERSION)
type = &type_integer;
else
type = &type_float;
} else if (op == '*' && t1 == &type_vector && t2 == &type_vector) {
type = &type_float;
}
if (!type)
error (e1, "internal error");
if (options.code.progsversion == PROG_ID_VERSION) {
switch (op) {
case '%':
{
expr_t *tmp1, *tmp2;
e = new_block_expr ();
if (e2->type < ex_string)
tmp1 = new_temp_def_expr (&type_float);
else
tmp1 = e2;
tmp2 = new_temp_def_expr (&type_float);
e2 = binary_expr ('&', e2, new_float_expr (-1.0));
e1 = binary_expr ('&', e1, new_float_expr (-1.0));
if (tmp1 != e2)
append_expr (e, new_bind_expr (e2, tmp1));
append_expr (e, new_bind_expr (binary_expr ('/', e1, tmp1),
tmp2));
e2 = binary_expr ('&', tmp2, new_float_expr (-1.0));
e->e.block.result = binary_expr ('-', tmp2, e2);
e2 = e;
e1 = tmp1;
op = '*';
}
break;
}
}
e = new_binary_expr (op, e1, e2);
e->e.expr.type = type;
return e;
}
expr_t *
asx_expr (int op, expr_t *e1, expr_t *e2)
{
if (e1->type == ex_error)
return e1;
else if (e2->type == ex_error)
return e2;
else {
expr_t *e = new_expr ();
*e = *e1;
e2->paren = 1;
return assign_expr (e, binary_expr (op, e1, e2));
}
}
expr_t *
unary_expr (int op, expr_t *e)
{
convert_name (e);
check_initialized (e);
if (e->type == ex_error)
return e;
switch (op) {
case '-':
switch (e->type) {
case ex_error:
case ex_label:
case ex_name:
case ex_state:
error (e, "internal error");
abort ();
case ex_uexpr:
if (e->e.expr.op == '-')
return e->e.expr.e1;
case ex_block:
if (!e->e.block.result)
return error (e, "invalid type for unary -");
case ex_expr:
case ex_bool:
case ex_def:
case ex_temp:
{
expr_t *n = new_unary_expr (op, e);
n->e.expr.type = (e->type == ex_def)
? e->e.def->type : e->e.expr.type;
return n;
}
case ex_short:
e->e.short_val *= -1;
return e;
case ex_integer:
case ex_uinteger:
e->e.integer_val *= -1;
return e;
case ex_float:
e->e.float_val *= -1;
return e;
case ex_nil:
case ex_string:
case ex_entity:
case ex_field:
case ex_func:
case ex_pointer:
return error (e, "invalid type for unary -");
case ex_vector:
e->e.vector_val[0] *= -1;
e->e.vector_val[1] *= -1;
e->e.vector_val[2] *= -1;
return e;
case ex_quaternion:
e->e.quaternion_val[0] *= -1;
e->e.quaternion_val[1] *= -1;
e->e.quaternion_val[2] *= -1;
e->e.quaternion_val[3] *= -1;
return e;
}
break;
case '!':
switch (e->type) {
case ex_error:
case ex_label:
case ex_name:
case ex_state:
error (e, "internal error");
abort ();
case ex_bool:
return new_bool_expr (e->e.bool.false_list,
e->e.bool.true_list, e);
case ex_block:
if (!e->e.block.result)
return error (e, "invalid type for unary !");
case ex_uexpr:
case ex_expr:
case ex_def:
case ex_temp:
{
expr_t *n = new_unary_expr (op, e);
if (options.code.progsversion > PROG_ID_VERSION)
n->e.expr.type = &type_integer;
else
n->e.expr.type = &type_float;
return n;
}
case ex_nil:
return error (e, "invalid type for unary !");
case ex_short:
e->e.short_val = !e->e.short_val;
return e;
case ex_integer:
case ex_uinteger:
e->e.integer_val = !e->e.integer_val;
return e;
case ex_float:
e->e.integer_val = !e->e.float_val;
e->type = ex_integer;
return e;
case ex_string:
e->e.integer_val = !e->e.string_val || !e->e.string_val[0];
e->type = ex_integer;
return e;
case ex_vector:
e->e.integer_val = !e->e.vector_val[0]
&& !e->e.vector_val[1]
&& !e->e.vector_val[2];
e->type = ex_integer;
return e;
case ex_quaternion:
e->e.integer_val = !e->e.quaternion_val[0]
&& !e->e.quaternion_val[1]
&& !e->e.quaternion_val[2]
&& !e->e.quaternion_val[3];
e->type = ex_integer;
return e;
case ex_entity:
case ex_field:
case ex_func:
case ex_pointer:
error (e, "internal error");
abort ();
}
break;
case '~':
switch (e->type) {
case ex_error:
case ex_label:
case ex_name:
case ex_state:
error (e, "internal error");
abort ();
case ex_uexpr:
if (e->e.expr.op == '~')
return e->e.expr.e1;
goto bitnot_expr;
case ex_block:
if (!e->e.block.result)
return error (e, "invalid type for unary ~");
goto bitnot_expr;
case ex_expr:
case ex_bool:
case ex_def:
case ex_temp:
bitnot_expr:
if (options.code.progsversion == PROG_ID_VERSION) {
expr_t *n1 = new_integer_expr (-1);
return binary_expr ('-', n1, e);
} else {
expr_t *n = new_unary_expr (op, e);
type_t *t = get_type (e);
if (t != &type_integer && t != &type_float
&& t != &type_quaternion)
return error (e, "invalid type for unary ~");
n->e.expr.type = t;
return n;
}
case ex_short:
e->e.short_val = ~e->e.short_val;
return e;
case ex_integer:
case ex_uinteger:
e->e.integer_val = ~e->e.integer_val;
return e;
case ex_float:
e->e.float_val = ~(int) e->e.float_val;
return e;
case ex_quaternion:
QuatConj (e->e.quaternion_val, e->e.quaternion_val);
return e;
case ex_nil:
case ex_string:
case ex_vector:
case ex_entity:
case ex_field:
case ex_func:
case ex_pointer:
return error (e, "invalid type for unary ~");
}
break;
case '.':
if (extract_type (e) != ev_pointer)
return error (e, "invalid type for unary .");
e = new_unary_expr ('.', e);
e->e.expr.type = get_type (e->e.expr.e1)->aux_type;
return e;
}
error (e, "internal error");
abort ();
}
expr_t *
build_function_call (expr_t *fexpr, type_t *ftype, expr_t *params)
{
expr_t *e;
int arg_count = 0, parm_count = 0;
int i;
expr_t *args = 0, **a = &args;
type_t *arg_types[MAX_PARMS];
expr_t *arg_exprs[MAX_PARMS][2];
int arg_expr_count = 0;
expr_t *call;
expr_t *err = 0;
for (e = params; e; e = e->next) {
if (e->type == ex_error)
return e;
arg_count++;
}
if (arg_count > MAX_PARMS) {
return error (fexpr, "more than %d parameters", MAX_PARMS);
}
if (ftype->num_parms < -1) {
if (-arg_count > ftype->num_parms + 1) {
if (!options.traditional)
return error (fexpr, "too few arguments");
if (options.warnings.traditional)
warning (fexpr, "too few arguments");
}
parm_count = -ftype->num_parms - 1;
} else if (ftype->num_parms >= 0) {
if (arg_count > ftype->num_parms) {
return error (fexpr, "too many arguments");
} else if (arg_count < ftype->num_parms) {
if (!options.traditional)
return error (fexpr, "too few arguments");
if (options.warnings.traditional)
warning (fexpr, "too few arguments");
}
parm_count = ftype->num_parms;
}
for (i = arg_count - 1, e = params; i >= 0; i--, e = e->next) {
type_t *t = get_type (e);
check_initialized (e);
if (ftype->parm_types[i] == &type_float && e->type == ex_integer) {
convert_int (e);
t = &type_float;
}
if (i < parm_count) {
if (e->type == ex_nil)
convert_nil (e, t = ftype->parm_types[i]);
if (e->type == ex_bool)
convert_from_bool (e, ftype->parm_types[i]);
if (e->type == ex_error)
return e;
if (!type_assignable (ftype->parm_types[i], t)) {
print_type (ftype->parm_types[i]); puts ("");
print_type (t); puts ("");
err = error (e, "type mismatch for parameter %d of %s",
i + 1, fexpr->e.def->name);
}
t = ftype->parm_types[i];
} else {
if (e->type == ex_nil)
convert_nil (e, t = &type_vector); //XXX largest param size
if (e->type == ex_bool)
convert_from_bool (e, get_type (e));
if (e->type == ex_integer
&& options.code.progsversion == PROG_ID_VERSION)
convert_int (e);
if (e->type == ex_integer && options.warnings.vararg_integer)
warning (e, "passing integer consant into ... function");
}
arg_types[arg_count - 1 - i] = t;
}
if (err)
return err;
call = new_block_expr ();
call->e.block.is_call = 1;
for (e = params, i = 0; e; e = e->next, i++) {
if (has_function_call (e)) {
*a = new_temp_def_expr (arg_types[i]);
arg_exprs[arg_expr_count][0] = cast_expr (arg_types[i], e);
arg_exprs[arg_expr_count][1] = *a;
arg_expr_count++;
} else {
*a = cast_expr (arg_types[i], e);
}
// new_binary_expr calls inc_users for both args, but in_users doesn't
// walk expression chains so only the first arg expression in the chain
// (the last arg in the call) gets its user count incremented, thus
// ensure all other arg expressions get their user counts incremented.
if (a != &args)
inc_users (*a);
a = &(*a)->next;
}
for (i = 0; i < arg_expr_count - 1; i++) {
append_expr (call, assign_expr (arg_exprs[i][1], arg_exprs[i][0]));
}
if (arg_expr_count) {
e = new_bind_expr (arg_exprs[arg_expr_count - 1][0],
arg_exprs[arg_expr_count - 1][1]);
inc_users (arg_exprs[arg_expr_count - 1][0]);
inc_users (arg_exprs[arg_expr_count - 1][1]);
append_expr (call, e);
}
e = new_binary_expr ('c', fexpr, args);
e->e.expr.type = ftype->aux_type;
append_expr (call, e);
if (ftype->aux_type != &type_void) {
call->e.block.result = new_ret_expr (ftype->aux_type);
} else if (options.traditional) {
call->e.block.result = new_ret_expr (&type_float);
}
return call;
}
expr_t *
function_expr (expr_t *fexpr, expr_t *params)
{
type_t *ftype;
find_function (fexpr, params);
ftype = get_type (fexpr);
if (fexpr->type == ex_error)
return fexpr;
if (ftype->type != ev_func) {
if (fexpr->type == ex_def)
return error (fexpr, "Called object \"%s\" is not a function",
fexpr->e.def->name);
else
return error (fexpr, "Called object is not a function");
}
if (fexpr->type == ex_def && params && params->type == ex_string) {
// FIXME eww, I hate this, but it's needed :(
// FIXME make a qc hook? :)
def_t *func = fexpr->e.def;
def_t *e = ReuseConstant (params, 0);
if (strncmp (func->name, "precache_sound", 14) == 0)
PrecacheSound (e, func->name[14]);
else if (strncmp (func->name, "precache_model", 14) == 0)
PrecacheModel (e, func->name[14]);
else if (strncmp (func->name, "precache_file", 13) == 0)
PrecacheFile (e, func->name[13]);
}
return build_function_call (fexpr, ftype, params);
}
expr_t *
return_expr (function_t *f, expr_t *e)
{
type_t *t;
if (!e) {
if (f->def->type->aux_type != &type_void) {
if (options.traditional) {
if (options.warnings.traditional)
warning (e,
"return from non-void function without a value");
e = new_nil_expr ();
} else {
e = error (e, "return from non-void function without a value");
return e;
}
}
return new_unary_expr ('r', 0);
}
t = get_type (e);
if (e->type == ex_error)
return e;
if (f->def->type->aux_type == &type_void) {
if (!options.traditional)
return error (e, "returning a value for a void function");
if (options.warnings.traditional)
warning (e, "returning a value for a void function");
}
if (e->type == ex_bool)
e = convert_from_bool (e, f->def->type->aux_type);
if (f->def->type->aux_type == &type_float && e->type == ex_integer) {
e->type = ex_float;
e->e.float_val = e->e.integer_val;
t = &type_float;
}
check_initialized (e);
if (t == &type_void) {
if (e->type == ex_nil) {
t = f->def->type->aux_type;
e->type = expr_types[t->type];
} else {
if (!options.traditional)
return error (e, "void value not ignored as it ought to be");
if (options.warnings.traditional)
warning (e, "void value not ignored as it ought to be");
//FIXME does anything need to be done here?
}
}
if (!type_assignable (f->def->type->aux_type, t)) {
if (!options.traditional)
return error (e, "type mismatch for return value of %s",
f->def->name);
if (options.warnings.traditional)
warning (e, "type mismatch for return value of %s",
f->def->name);
} else {
if (f->def->type->aux_type != t)
e = cast_expr (f->def->type->aux_type, e);
}
return new_unary_expr ('r', e);
}
expr_t *
conditional_expr (expr_t *cond, expr_t *e1, expr_t *e2)
{
expr_t *block = new_block_expr ();
type_t *type1 = get_type (e1);
type_t *type2 = get_type (e2);
expr_t *tlabel = new_label_expr ();
expr_t *flabel = new_label_expr ();
expr_t *elabel = new_label_expr ();
if (cond->type == ex_error)
return cond;
if (e1->type == ex_error)
return e1;
if (e2->type == ex_error)
return e2;
cond = convert_bool (cond, 1);
if (cond->type == ex_error)
return cond;
backpatch (cond->e.bool.true_list, tlabel);
backpatch (cond->e.bool.false_list, flabel);
block->e.block.result = (type1 == type2) ? new_temp_def_expr (type1) : 0;
append_expr (block, cond);
append_expr (cond->e.bool.e, flabel);
if (block->e.block.result)
append_expr (block, assign_expr (block->e.block.result, e2));
else
append_expr (block, e2);
append_expr (block, new_unary_expr ('g', elabel));
append_expr (block, tlabel);
if (block->e.block.result)
append_expr (block, assign_expr (block->e.block.result, e1));
else
append_expr (block, e1);
append_expr (block, elabel);
return block;
}
expr_t *
incop_expr (int op, expr_t *e, int postop)
{
expr_t *one;
expr_t *incop;
if (e->type == ex_error)
return e;
one = new_integer_expr (1); // integer constants get auto-cast to float
incop = asx_expr (op, e, one);
if (postop) {
expr_t *temp;
type_t *type = get_type (e);
expr_t *block = new_block_expr ();
temp = new_temp_def_expr (type);
append_expr (block, assign_expr (temp, e));
append_expr (block, incop);
block->e.block.result = temp;
return block;
}
return incop;
}
expr_t *
array_expr (expr_t *array, expr_t *index)
{
type_t *array_type = get_type (array);
type_t *index_type = get_type (index);
expr_t *scale;
expr_t *e;
int size;
if (array->type == ex_error)
return array;
if (index->type == ex_error)
return index;
if (array_type->type != ev_pointer && array_type->type != ev_array)
return error (array, "not an array");
if (index_type != &type_integer && index_type != &type_uinteger)
return error (index, "invalid array index type");
if (array_type->num_parms
&& index->type >= ex_integer
&& index->e.uinteger_val >= (unsigned int) array_type->num_parms)
return error (index, "array index out of bounds");
size = type_size (array_type->aux_type);
if (size > 1) {
scale = new_expr ();
scale->type = expr_types[index_type->type];
scale->e.integer_val = size;
index = binary_expr ('*', index, scale);
}
if ((index->type == ex_integer
&& index->e.integer_val < 32768 && index->e.integer_val >= -32768)
|| (index->type == ex_uinteger
&& index->e.uinteger_val < 32768)) {
index->type = ex_short;
}
if (array_type->type == ev_array) {
e = address_expr (array, index, array_type->aux_type);
} else {
if (index->type != ex_short || index->e.integer_val) {
e = new_binary_expr ('&', array, index);
//e->e.expr.type = array_type->aux_type;
e->e.expr.type = array_type;
} else {
e = array;
}
}
e = unary_expr ('.', e);
return e;
}
expr_t *
address_expr (expr_t *e1, expr_t *e2, type_t *t)
{
expr_t *e;
type_t *type;
if (e1->type == ex_error)
return e1;
if (!t)
t = get_type (e1);
switch (e1->type) {
case ex_def:
{
def_t *def = e1->e.def;
def->used = 1;
type = def->type;
if (type->type == ev_struct || type->type == ev_class) {
e = new_pointer_expr (0, t, def);
e->line = e1->line;
e->file = e1->file;
} else if (type->type == ev_array) {
e = e1;
e->type = ex_pointer;
e->e.pointer.val = 0;
e->e.pointer.type = t;
e->e.pointer.def = def;
} else {
e = new_unary_expr ('&', e1);
e->e.expr.type = pointer_type (t);
}
break;
}
case ex_expr:
if (e1->e.expr.op == '.') {
e = e1;
e->e.expr.op = '&';
e->e.expr.type = pointer_type (e->e.expr.type);
break;
} else if (e1->e.expr.op == 'b') {
e = new_unary_expr ('&', e1);
e->e.expr.type = pointer_type (e1->e.expr.type);
break;
}
return error (e1, "invalid type for unary &");
case ex_uexpr:
if (e1->e.expr.op == '.') {
e = e1->e.expr.e1;
if (e->type == ex_expr && e->e.expr.op == '.') {
e->e.expr.type = e->e.expr.type;
e->e.expr.op = '&';
}
break;
}
return error (e1, "invalid type for unary &");
default:
return error (e1, "invalid type for unary &");
}
if (e2) {
if (e2->type == ex_error)
return e2;
if (e->type == ex_pointer && e2->type == ex_short) {
e->e.pointer.val += e2->e.short_val;
e->e.pointer.type = t;
} else {
if (e2->type != ex_short || e2->e.short_val) {
if (e->type == ex_expr && e->e.expr.op == '&') {
e = new_binary_expr ('&', e->e.expr.e1,
binary_expr ('+', e->e.expr.e2, e2));
} else {
e = new_binary_expr ('&', e, e2);
}
}
if (e->type == ex_expr || e->type == ex_uexpr)
e->e.expr.type = pointer_type (t);
}
}
return e;
}
static inline int
is_indirect (expr_t *e)
{
if (e->type == ex_expr && e->e.expr.op == '.')
return 1;
if (!(e->type == ex_uexpr && e->e.expr.op == '.'))
return 0;
e = e->e.expr.e1;
if (e->type != ex_pointer
|| !(POINTER_VAL (e->e.pointer) >= 0
&& POINTER_VAL (e->e.pointer) < 65536)) {
return 1;
}
return 0;
}
static inline int
is_lvalue (expr_t *e)
{
if (e->type == ex_def || e->type == ex_temp)
return 1;
if (e->type == ex_expr && e->e.expr.op == '.')
return 1;
if (e->type == ex_uexpr && e->e.expr.op == '.')
return 1;
return 0;
}
expr_t *
assign_expr (expr_t *e1, expr_t *e2)
{
int op = '=';
type_t *t1, *t2, *type;
expr_t *e;
convert_name (e1);
convert_name (e2);
if (e1->type == ex_error)
return e1;
if (e2->type == ex_error)
return e2;
if (options.traditional) {
if (e2->type == ex_expr && !e2->paren
&& (e2->e.expr.op == AND || e2->e.expr.op == OR)) {
notice (e2, "precedence of `%s' and `%s' inverted for "
"traditional code", get_op_string (op),
get_op_string (e2->e.expr.op));
e1 = assign_expr (e1, e2->e.expr.e1);
e1->paren = 1;
return binary_expr (e2->e.expr.op, e1, e2->e.expr.e2);
}
}
if (e1->type == ex_def)
def_initialized (e1->e.def);
if (!is_lvalue (e1)) {
if (options.traditional)
warning (e1, "invalid lvalue in assignment");
else
return error (e1, "invalid lvalue in assignment");
}
t1 = get_type (e1);
t2 = get_type (e2);
if (!t1 || !t2) {
error (e1, "internal error");
abort ();
}
//XXX func = func ???
if (t1->type != ev_pointer || t2->type != ev_array)
check_initialized (e2);
else {
e2 = address_expr (e2, 0, t2->aux_type);
t2 = get_type (e2);
}
if (e2->type == ex_bool)
e2 = convert_from_bool (e2, t1);
if (t1->type != ev_void && e2->type == ex_nil) {
t2 = t1;
convert_nil (e2, t2);
}
e2->rvalue = 1;
if (!type_assignable (t1, t2)) {
if (options.traditional) {
if (t1->type == ev_func && t2->type == ev_func) {
warning (e1, "assignment between disparate function types");
} else if (t1->type == ev_float && t2->type == ev_vector) {
warning (e1, "assignment of vector to float");
e2 = binary_expr ('.', e2, new_name_expr ("x"));
} else if (t1->type == ev_vector && t2->type == ev_float) {
warning (e1, "assignment of float to vector");
e1 = binary_expr ('.', e1, new_name_expr ("x"));
} else {
return type_mismatch (e1, e2, op);
}
} else {
return type_mismatch (e1, e2, op);
}
}
type = t1;
if (is_indirect (e1) && is_indirect (e2)) {
if (extract_type (e2) == ev_struct) {
e1 = address_expr (e1, 0, 0);
e2 = address_expr (e2, 0, 0);
e = new_move_expr (e1, e2, get_type (e2));
} else {
expr_t *temp = new_temp_def_expr (t1);
e = new_block_expr ();
append_expr (e, assign_expr (temp, e2));
append_expr (e, assign_expr (e1, temp));
e->e.block.result = temp;
}
return e;
} else if (is_indirect (e1)) {
if (extract_type (e1) == ev_struct) {
e1 = address_expr (e1, 0, 0);
return new_move_expr (e1, e2, get_type (e2));
}
if (e1->type == ex_expr) {
if (get_type (e1->e.expr.e1) == &type_entity) {
type = e1->e.expr.type;
e1->e.expr.type = pointer_type (type);
e1->e.expr.op = '&';
}
op = PAS;
} else {
e = e1->e.expr.e1;
if (e->type != ex_pointer
|| !(POINTER_VAL (e->e.pointer) > 0
&& POINTER_VAL (e->e.pointer) < 65536)) {
e1 = e;
op = PAS;
}
}
} else if (is_indirect (e2)) {
if (extract_type (e1) == ev_struct) {
e2 = address_expr (e2, 0, 0);
e2->rvalue = 1;
return new_move_expr (e1, e2, get_type (e2));
}
if (e2->type == ex_uexpr) {
e = e2->e.expr.e1;
if (e->type != ex_pointer
|| !(POINTER_VAL (e->e.pointer) > 0
&& POINTER_VAL (e->e.pointer) < 65536)) {
if (e->type == ex_expr && e->e.expr.op == '&'
&& e->e.expr.type->type == ev_pointer
&& e->e.expr.e1->type < ex_string) {
e2 = e;
e2->e.expr.op = '.';
e2->e.expr.type = t2;
e2->rvalue = 1;
}
}
}
}
if (extract_type (e1) == ev_struct) {
return new_move_expr (e1, e2, get_type (e2));
}
if (!type)
error (e1, "internal error");
e = new_binary_expr (op, e1, e2);
e->e.expr.type = type;
return e;
}
expr_t *
cast_expr (type_t *type, expr_t *e)
{
expr_t *c;
type_t *e_type;
convert_name (e);
if (e->type == ex_error)
return e;
check_initialized (e);
e_type = get_type (e);
if (type == e_type)
return e;
if (!(type->type == ev_pointer
&& (e_type->type == ev_pointer
|| e_type == &type_integer || e_type == &type_uinteger
|| e_type->type == ev_array))
&& !(type->type == ev_func && e_type->type == ev_func)
&& !(((type == &type_integer || type == &type_uinteger)
&& (e_type == &type_float || e_type == &type_integer
|| e_type == &type_uinteger || e_type->type == ev_pointer))
|| (type == &type_float
&& (e_type == &type_integer || e_type == &type_uinteger)))) {
return error (e, "can not cast from %s to %s",
pr_type_name[extract_type (e)],
pr_type_name[type->type]);
}
if (e_type ->type == ev_array) {
return address_expr (e, 0, 0);
}
if (e->type == ex_uexpr && e->e.expr.op == '.') {
e->e.expr.type = type;
c = e;
} else {
c = new_unary_expr ('C', e);
c->e.expr.type = type;
}
return c;
}
void
init_elements (def_t *def, expr_t *eles)
{
expr_t *e, *c;
int count, i, num_params, ofs;
pr_type_t *g;
def_t *elements;
ofs = def->ofs;
if (def->local && local_expr)
ofs = 0;
if (def->type->type == ev_array) {
elements = calloc (def->type->num_parms, sizeof (def_t));
for (i = 0; i < def->type->num_parms; i++) {
elements[i].type = def->type->aux_type;
elements[i].ofs = ofs + i * type_size (def->type->aux_type);
}
num_params = i;
} else if (def->type->type == ev_struct) {
struct_field_t *field;
for (i = 0, field = def->type->s.strct->struct_head; field;
i++, field = field->next)
;
elements = calloc (i, sizeof (def_t));
for (i = 0, field = def->type->s.strct->struct_head; field;
i++, field = field->next) {
elements[i].type = field->type;
elements[i].ofs = ofs + field->offset;
}
num_params = i;
} else {
error (eles, "invalid initializer");
return;
}
for (count = 0, e = eles->e.block.head; e; count++, e = e->next)
if (e->type == ex_error) {
free (elements);
return;
}
if (count > num_params) {
if (options.warnings.initializer)
warning (eles, "excessive elements in initializer");
count = num_params;
}
for (i = 0, e = eles->e.block.head; i < count; i++, e = e->next) {
g = G_POINTER (pr_type_t, elements[i].ofs);
c = constant_expr (e);
if (c->type == ex_block) {
if (elements[i].type->type != ev_array
&& elements[i].type->type != ev_struct) {
error (e, "type mismatch in initializer");
continue;
}
init_elements (&elements[i], c);
continue;
} else if (c->type >= ex_string) {
if (c->type == ex_integer
&& elements[i].type->type == ev_float)
convert_int (c);
else if (c->type == ex_integer
&& elements[i].type->type == ev_uinteger)
convert_int_uint (c);
else if (c->type == ex_uinteger
&& elements[i].type->type == ev_float)
convert_uint (c);
else if (c->type == ex_uinteger
&& elements[i].type->type == ev_integer)
convert_uint_int (c);
if (get_type (c) != elements[i].type) {
error (e, "type mismatch in initializer");
continue;
}
} else {
if (!def->local || !local_expr) {
error (e, "non-constant initializer");
continue;
}
}
if (def->local && local_expr) {
int ofs = elements[i].ofs;
type_t *type = elements[i].type;
expr_t *ptr = new_pointer_expr (ofs, type, def);
append_expr (local_expr, assign_expr (unary_expr ('.', ptr), c));
} else {
if (c->type == ex_string) {
EMIT_STRING (g->string_var, c->e.string_val);
} else {
memcpy (g, &c->e, type_size (get_type (c)) * 4);
}
}
}
free (elements);
}
expr_t *
selector_expr (keywordarg_t *selector)
{
dstring_t *sel_id = dstring_newstr ();
expr_t *sel;
def_t *sel_def;
int index;
selector = copy_keywordargs (selector);
selector = (keywordarg_t *) reverse_params ((param_t *) selector);
selector_name (sel_id, selector);
index = selector_index (sel_id->str);
index *= type_size (type_SEL.aux_type);
sel_def = get_def (type_SEL.aux_type, "_OBJ_SELECTOR_TABLE", pr.scope,
st_extern);
sel = new_def_expr (sel_def);
dstring_delete (sel_id);
return address_expr (sel, new_short_expr (index), 0);
}
expr_t *
protocol_expr (const char *protocol)
{
return error (0, "not implemented");
}
expr_t *
encode_expr (type_t *type)
{
dstring_t *encoding = dstring_newstr ();
expr_t *e;
encode_type (encoding, type);
e = new_string_expr (encoding->str);
free (encoding);
return e;
}
expr_t *
super_expr (class_type_t *class_type)
{
def_t *super_d;
expr_t *super;
expr_t *e;
expr_t *super_block;
class_t *class;
class_type_t _class_type;
if (!class_type)
return error (new_expr (),
"`super' used outside of class implementation");
if (class_type->is_class)
class = class_type->c.class;
else
class = class_type->c.category->class;
if (!class->super_class)
return error (new_expr (), "%s has no super class", class->name);
super_d = get_def (type_Super.aux_type, ".super", current_func->scope,
st_local);
def_initialized (super_d);
super = new_def_expr (super_d);
super_block = new_block_expr ();
e = assign_expr (binary_expr ('.', super, new_name_expr ("self")),
new_name_expr ("self"));
append_expr (super_block, e);
_class_type.is_class = 1;
_class_type.c.class = class;
e = new_def_expr (class_def (&_class_type, 1));
e = assign_expr (binary_expr ('.', super, new_name_expr ("class")),
binary_expr ('.', e, new_name_expr ("super_class")));
append_expr (super_block, e);
e = address_expr (super, 0, &type_void);
super_block->e.block.result = e;
return super_block;
}
expr_t *
message_expr (expr_t *receiver, keywordarg_t *message)
{
expr_t *args = 0, **a = &args;
expr_t *selector = selector_expr (message);
expr_t *call;
keywordarg_t *m;
int super = 0, class_msg = 0;
type_t *rec_type;
class_t *class;
method_t *method;
if (receiver->type == ex_name
&& strcmp (receiver->e.string_val, "super") == 0) {
super = 1;
receiver = super_expr (current_class);
if (receiver->type == ex_error)
return receiver;
if (current_class->is_class)
class = current_class->c.class;
else
class = current_class->c.category->class;
rec_type = class->type;
} else {
if (receiver->type == ex_name && get_class (receiver->e.string_val, 0))
class_msg = 1;
rec_type = get_type (receiver);
if (receiver->type == ex_error)
return receiver;
if (rec_type->type != ev_pointer
|| (rec_type->aux_type->type != ev_object
&& rec_type->aux_type->type != ev_class))
return error (receiver, "not a class/object");
class = rec_type->aux_type->s.class;
}
method = class_message_response (class, class_msg, selector);
if (method)
rec_type = method->type->aux_type;
for (m = message; m; m = m->next) {
*a = m->expr;
while ((*a))
a = &(*a)->next;
}
*a = selector;
a = &(*a)->next;
*a = receiver;
if (method) {
expr_t *err;
if ((err = method_check_params (method, args)))
return err;
call = build_function_call (send_message (super), method->type, args);
} else {
call = build_function_call (send_message (super), &type_IMP, args);
}
if (call->type == ex_error)
return receiver;
call->e.block.result = new_ret_expr (rec_type);
return call;
}
expr_t *
sizeof_expr (expr_t *expr, struct type_s *type)
{
if (!((!expr) ^ (!type))) {
error (0, "internal error");
abort ();
}
if (!type)
type = get_type (expr);
expr = new_integer_expr (type_size (type));
return expr;
}
static void
report_function (expr_t *e)
{
static function_t *last_func = (function_t *)-1L;
static string_t last_file;
string_t file = pr.source_file;
srcline_t *srcline;
if (e)
file = e->file;
if (file != last_file) {
for (srcline = pr.srcline_stack; srcline; srcline = srcline->next)
fprintf (stderr, "In file included from %s:%d:\n",
G_GETSTR (srcline->source_file), srcline->source_line);
}
last_file = file;
if (current_func != last_func) {
if (current_func) {
fprintf (stderr, "%s: In function `%s':\n", G_GETSTR (file),
current_func->def->name);
} else {
fprintf (stderr, "%s: At top level:\n", G_GETSTR (file));
}
}
last_func = current_func;
}
static void
_warning (expr_t *e, const char *fmt, va_list args)
{
string_t file = pr.source_file;
int line = pr.source_line;
report_function (e);
if (options.warnings.promote) {
options.warnings.promote = 0; // only want to do this once
fprintf (stderr, "%s: warnings treated as errors\n", "qfcc");
pr.error_count++;
}
if (e) {
file = e->file;
line = e->line;
}
fprintf (stderr, "%s:%d: warning: ", G_GETSTR (file), line);
vfprintf (stderr, fmt, args);
fputs ("\n", stderr);
}
expr_t *
notice (expr_t *e, const char *fmt, ...)
{
va_list args;
if (options.notices.silent)
return e;
va_start (args, fmt);
if (options.notices.promote) {
_warning (e, fmt, args);
} else {
string_t file = pr.source_file;
int line = pr.source_line;
report_function (e);
if (e) {
file = e->file;
line = e->line;
}
fprintf (stderr, "%s:%d: notice: ", G_GETSTR (file), line);
vfprintf (stderr, fmt, args);
fputs ("\n", stderr);
}
va_end (args);
return e;
}
expr_t *
warning (expr_t *e, const char *fmt, ...)
{
va_list args;
va_start (args, fmt);
_warning (e, fmt, args);
va_end (args);
return e;
}
expr_t *
error (expr_t *e, const char *fmt, ...)
{
va_list args;
string_t file = pr.source_file;
int line = pr.source_line;
report_function (e);
va_start (args, fmt);
if (e) {
file = e->file;
line = e->line;
}
fprintf (stderr, "%s:%d: error: ", G_GETSTR (file), line);
vfprintf (stderr, fmt, args);
fputs ("\n", stderr);
va_end (args);
pr.error_count++;
if (e) {
e->type = ex_error;
}
return e;
}