They're buggy in that the defspaces for parameters and locals are
incorrect (they need to point to the calling scope's space). Also,
parameters are not yet hooked up correctly. However, errors (because I
need to allow casts from scalars to vectors) do get handled.
xvalue symbols refer to two expressions: an lvalue and an rvalue. They
are meant to be used with xvalue expressions.
xvalue expressions are useful when a distinction must be made between
the behavior of something (eg, a pascal function symbol) must change
depending on whether it's an lvalue (assignment of the function's return
value) or an rvalue (a call to the function, especially when the
function takes no parameters).
The main goal was to make it possible to give generic functions
definitions (since the code would be very dependent on the actual
parameter types), but will also allow for inline functions. It also
helped move a lot of the back-end dependent code out of semantics
processing and almost completely (if not completely) out of the parser.
Possibly more importantly, it gets the dags flushing out of the parser,
which means such is now shared by all front-ends.
There's probably a lot of dead code in expr.c now, but that can be taken
care of another time.
While a reference var can't be initialized yet, using them seems to work
in that they get dereferenced when the value needs to be read or written
(though I haven't seen any generated code for them yet).
I realized that spir-v pointers are essentially references (the way
they're used) since OpVariable requires a pointer type rather than the
base type. Thus, under the hood, references are just pointers with
automatic dereferencing. However, nothing uses references yet, and I
expect to run into issues with is_pointer vs is_reference vs is_ptr
(high-level pointer, reference, low-level pointer, respectively).
Now declarations can be deferred too, thus things like generic/template
and inline functions should be possible. However, the most important
thing is this is a step towards a cleaner middle layer for compilation,
separating front-end language from back-end code-gen.
I plan to do this eventually for Ruamoko, but I need it to keep working
for now; it's rather nice having multiple languages. I expect this will
open up a lot of options for inlining, generic/template function
instantiation, etc. Right now, it's helping with specialization
constants in glsl.
I don't know why I thought it was a good idea to make sy_var context
dependent. Renaming sy_var to sy_def makes it a little easier to know to
use the def field, too.
Thare are still many const casts, but this does get rid of one set. I
had tried to replace the paren flag with a () unary expression, but that
brought out a whole pile of places that had problems (especially
anything to do with boolean expressions).
Attributes seem appropriate as GLSL's qualifiers affect variables rather
than types (since there's no typedef).
Not much is done with the attributes yet other than some basic error
checking (duplicates of non-layout attributes) and debug output, but
most (if not all) declarations get to the declaration code with
attributes intact.
Now parameters can be declared `const`, `@in`, `@out`, `@inout`. `@in`
is redundant as it's the default, but I guess it's nice for
self-documenting code. `const` marks the parameter as read-only in the
function, `@out` and `@inout` allow the parameter to pass the value back
out (by copy), but `@out` does not initialize the parameter before
calling and returning without setting an `@out` parameter is an error
(but unfortunately, currently detected only when optimizing).
Unfortunately, it seems to have broken (only!) v6 progs when optimizing
as the second parameter gets optimized out.
There's no direct support for namespaces in Ruamoko yet, nor even in
qfcc, but glsl's blocks bring in a bit of foundation for them, even the
concept of "using" (for blocks with no instance name).
The members don't get locations allocated to them yet, but
fstrianglest.vert compiles and links correctly otherwise.
Also, there's no error checking yet.
The expression grammar has been tidied up and some basic checks are made
of parameters to the type functions. Also, type parameters are looked up
so parsing now works properly. However, the type parameters are not used
correctly, so function generation doesn't work.
There were a few places where some const-casts were needed, but they're
localized to code that's supposed to manipulate types (but I do want to
come up with something to clean that up).
It's now meant only for ALLOC. Interestingly, when DEBUG_QF_MEMORY is
defined in expr.c, something breaks badly with vkgen (no sniffles out of
valgrind, though), but everything is fine with it not defined. It seems
there may be some unpleasant UB going on somewhere.
Or at least mostly so (there are a few casts). This doesn't fix the
motor bug, but I've wanted to do this for over twenty years and at least
I know what's not causing the bug. However, disabling fold_constants in
expr_algebra.c does "fix" things, so it's still a good place to look.
Finally, that little e. is cleaned up. convert_name was a bit of a pain
(in that it relied on modifying the expression rather than returning a
new one, or more that such behavior was relied on).
This makes working with them much easier, and the type system reflects
what's in the multi-vector. Unfortunately, that does mean that large
algebras will wind up having a LOT of types, but it allows for efficient
storage of sparse multi-vectors:
auto v = 4*(e1 + e032 + e123);
results in:
0005 0213 1:0008<00000008>4:void 0:0000<00000000>?:invalid
0:0044<00000044>4:void assign (<void>), v
0006 0213 1:000c<0000000c>4:void 0:0000<00000000>?:invalid
0:0048<00000048>4:void assign (<void>), {v + 4}
Where the two source vectors are:
44:1 0 .imm float:18e [4, 0, 0, 0]
48:1 0 .imm float:1aa [4, 0, 0, 4]
They just happen to be adjacent, but don't need to be.
This gets only some very basics working:
* Algebra (multi-vector) types: eg @algebra(float(3,0,1)).
* Algebra scopes (using either the above or @algebra(TYPE_NAME) where
the above was used in a typedef.
* Basis blades (eg, e12) done via procedural symbols that evaluate to
suitable constants based on the basis group for the blade.
* Addition and subtraction of multi-vectors (only partially tested).
* Assignment of sub-algebra multi-vectors to full-algebra multi-vectors
(missing elements zeroed).
There's still much work to be done, but I thought it time to get
something into git.
The support for the new vector types broke compiling code using
--advanced. Thus it's necessary to ensure vector constants are
float-type and vec3 and vec4 are treated as vector and quaternion, which
meant resurrecting the old vector expression code for v6p progs.
While swizzle does work, it requires the source to be properly aligned
and thus is not really the best choice. The extend instruction has no
alignment requirements (at all) and thus is much better suited to
converting a scalar to a vector type.
Fixes#30
The destination operand must be a full four component vector, but the
source can be smaller and small sources do not need to be aligned: the
offset of the source operand and the swizzle indices are adjusted. The
adjustments are done during final statement emission in order to avoid
confusing the data flow analyser (and that's when def offsets are known).
This allows all the tests to build and pass. I'll need to add tests to
ensure warnings happen when they should and that all vec operations are
correct (ouch, that'll be a lot of work), but vectors and quaternions
are working again.
Use with quaternions and vectors is a little broken in that
vec4/quaternion and vec3/vector are not the same types (by design) and
thus a cast is needed (not what I want, though). However, creating
vectors (that happen to be int due to int constants) does seem to be
working nicely otherwise.
The goal was to get lea being used for locals in ruamoko progs because
lea takes the base registers into account while the constant pointer
defs used by v6p cannot. Pointer defs are still used for gobals as they
may be out of reach of 16-bit addressing.
address_expr() has been simplified in that it no longer takes an offset:
the vast majority of the callers never passed one, and the few that did
have been reworked to use other mechanisms. In particular,
offset_pointer_expr does the manipulations needed to add an offset
(unscaled by type size) to a pointer. High-level pointer offsets still
apply a scale, though.
Alias expressions now do a better job of hanling aliasing of aliases by
simply replacing the target type when possible.
The parameter defs are allocated from the parameter space using a
minimum alignment of 4, and varargs functions get a va_list struct in
place of the ...
An "args" expression is unconditionally injected into the call arguments
list at the place where ... is in the list, with arguments passed
through ... coming after the ...
Arguments get through to functions now, but there's problems with taking
the address of local variables: currently done using constant pointer
defs, which can't work for the base register addressing used in Ruamoko
progs.
With the update to test-bi's printf (and a hack to qfcc for lea),
triangle.r actually works, printing the expected results (but -1 instead
of 1 for equality, though that too is actually expected). qfcc will take
a bit longer because it seems there are some design issues in address
expressions (ambiguity, and a few other things) that have pretty much
always been there.
Still need to get the base register index into the instructions, but I
think this is it for basic code generation. I should be able to start
testing Ruamoko properly fairly soon :)
This includes calls and unconditional jumps, relative and through a
table. The parameters are all lumped into the one object, with some
being unused by the different types (eg, args and ret_type used only by
call expressions). Just having nice names for the parameters (instead of
e1 and e2) makes it nice, even with all the sub-types lumped together.
No mysterious type aliasing bugs this time ;)
While this was a pain to get working, that pain only went to prove the
value of using proper "types" (even if only an enum) for different
expression types: just finding all the places to edit was a chore, and
easy to make mistakes (forgetting bits here and there).
Strangely enough, this exposed a pile of *type* aliasing bugs (next
commit).
While get_selector does the job of getting a selector from a selector
reference expression, I have long considered lumping various expression
types under ex_expr to be a mistake. Not only is this a step towards
sorting that out, it will make working on #24 easier.