While qfcc dealing sensibly with mixed target VMs in the object files
has always been an outstanding issue, with the new instruction set it
has become a priority. Most importantly, this should allow QF to
continue building while I work on qfcc targeting the new IS.
It now takes a context pointer (opaque data) that holds the buffers it
uses for the temporary strings. If the context pointer is null, a static
context is used (making those uses of va NOT thread-safe). Most calls to
va use the static context, but all such calls have been formatted
consistently so they are easy to find when it comes time to do a full
audit.
There's still some cleanup to do, but everything seems to be working
nicely: `make -j` works, `make distcheck` passes. There is probably
plenty of bitrot in the package directories (RPM, debian), though.
The vc project files have been removed since those versions are way out
of date and quakeforge is pretty much dependent on gcc now anyway.
Most of the old Makefile.am files are now Makemodule.am. This should
allow for new Makefile.am files that allow local building (to be added
on an as-needed bases). The current remaining Makefile.am files are for
standalone sub-projects.a
The installable bins are currently built in the top-level build
directory. This may change if the clutter gets to be too much.
While this does make a noticeable difference in build times, the main
reason for the switch was to take care of the growing dependency issues:
now it's possible to build tools for code generation (eg, using qfcc and
ruamoko programs for code-gen).
The compilation unit stores the directory from which qfcc was run and
any source files mentioned. This is similar to dwarf's compilation unit.
Right now, this is the only data in the new debug space, but more might
come in the future so it seems best to treat the debug space separately
in the object files.
Because type aliases need to be unaliased, the type pointers in the type
encodings need to be correct when it comes to linking defs and
functions. This fixes the linking errors in ruamoko/game.
I was very uncertain about the validity of messing with the old type
encoding that way, but adding the check to ensure the type has been
processed never fired, so it seems ok. And the comments help me a lot :)
This fixes the typelinker test, but not the linking error in
ruamoko/game that it was supposed to represent. I guess there's
something more going on (maybe type encoding relocation issues).
They take a pointer to a free-list used for hashlinks so the hashlink
pools can be per-thread. However, hash tables that are not updated are
always thread-safe, so this affects only updates. progs_t has been set
up such that it is easy for multiple progs within one thread can share
hashlinks.
This far better reflects the actual meaning. It is very likely that
ty_none is a holdover from long before there was full type encoding and
it meant that the union in qfcc's type_t had no data. This is still
true for basic types, but only if not a function, field or pointer type.
If the type was function, field or pointer, it was not true, so it was
misnamed pretty much from the start.
Either I had gotten confused while writing the code and mixed up line and
offset, or I had changed offset to line at one stage but missed a place.
This fixes the segfault when compiling chewed-alias.r and return-ivar.r
Rather than prefixing free_ to the supplied name, suffix _freelist to the
supplied name. The biggest advantage of this is it allows the free-list to
be a structure member. It also cleans up the name-space a little.
Also move the ALLOC/FREE macros from qfcc.h to QF/alloc.h (needed to for
set.c).
Both modules are more generally useful than just for qfcc (eg, set
builtins for ruamoko).
Simply "backed" and "virutal". Backed spaces have memory allocated to them
while virtual spaces do not. Virtual spaces are intended for local
variables and entity fields.
Because of the way it is used, the data in the type encodings space needs
to always be correct (ie, relocated), even for partially linked object
files.
Rather, only that it is neither external nor local. The idea was to catch
myself swapping the arguments to resolve_external_def, but for some reason
I decided type encoding defs would not be global (save game reasons?).
Fixes the bogus redefined errors when entity fields are used.
Also, rename extern_defs and defined_defs to extern_data_defs and
defined_data_defs (more consistent with the other tables).
The problem was caused by add_relocs and process_loose_relocs adjusting the
reloc offset based on the reloc's space's base address. This is fine for
most relocs, but as relocs for the type space have already been adjusted by
process_type_space, those relocs must be left alone by add_relocs and
process_loose_relocs. As a bonus, the duplicate code has been refactored
into a separate function :)
Now each encoding is copied across def by def using memcpy, with the
expectation that any references to other types will be handled via the
reloc system. Unfortunately, it seems there's an off-by-4 (hmm, suspicious
number...) in the reloc offsets, but I'll look into that after I get some
sleep.
defspace_alloc_loc can cause a realloc which will break the work qfo space
data pointers, so wrap it with alloc_data, which updates the appropriate
pointers and sizes.
The field/data def handling has been moved into process_data_def and
process_field def. The code for handling external defs has been moved into
its own function (extern_def()),
In passing, rename add_space to add_data_space, since it is limited to
handling data spaces.
For now, no other change has been made, but I'll be able to split up
process_def for data def vs field def processing and add a function for
processing type encoding defs.
All internal structs now have "proper" names, and fit the naming convention
(eg, obj_module (like objective-c's types, but obj instead of objc). Some
redundant types got removed (holdovers from before proper struct tag
handling).
Also, it has proven to be unnecessary to build internal classes, so
make_class and make_class_struct are gone, too.
This is similar to the problem with infinite recursion when encoding types.
The problem is with structs with self-referential pointers (eg, struct foo
{struct foo *bar}). The solution is to copy the type data to a buffer and
mark the buffer as transfered before actually processing the type. Further
processing of the type is done via the buffer.