Return statements never flow to the next block (or any other block, for
that matter), so drawing arrows leaving them not only messes up dot's
graphs, but is quite missleading.
When mering if/goto (ie, if skipping a goto), the rest of the dead code
remover is used to delete the goto. That part of the code unuses the goto's
label. The if was getting the goto's label without the lable's used count
being incremented (the usaged temporarily increases by one). I have no idea
why the problem showed up randomly, but this seems to fix it (it fixes /a/
bug, anyway).
The naive implementation of the if/goto merging was letting the old target
of the if get dropped because the block would lose its label and thus be
judged unreachable because the preceeding goto block was still in the list.
Instead, when the if/goto are "merged", mark the goto block as unreachable,
the following block as reachable, and break out of the analysis loop to
force the removal of the goto block. Since the dead block removal function
loops until no action is taken, all other dead blocks will be removed.
The output can be controlled via --block-dot (not yet documented). The
files a named <sourcefile>.<function>.<stage>.dot. Currently, stage will be
one of "initial" (after expression to statement conversion), "thread"
(after jump threading), "dead" (after dead block removal), "final" (final
state before actual code emission).
Labels can be shared between multiple flow-control instructions, so use the
label's used counter to determine when to remove the label. This was
causing problems with the jump threading.
The common cause seems to be casting a cast (very common, and I'm not sure
just realiasing the expression would be right). It does't cause any harm
(particularly, it doesn't trigger alias def chains), so I won't worry about
it.
The actual bug might still be elsewhere, but at least now I know the alias
chains were coming from accessing .return and .param_N, which are unions
(not directly usable by the progs engine). Emitting a reference to a union
(or struct) would create an alias def, but an alias expression was created
in the expression tree to simplify return/param access. The double layer
(sometimes 3 or 4) alias isn't really neaded, so rather than layering the
aliases, just re-alias the alaised def.
It is inteded for flagging buggy conditions in the compiler, particularly
after having fixed the original bug (in case something comes back from the
dead).
v6 progs expects .zero to be only 1 word. The code actually tried to keep
vector out of .zero, but it seems I'd rearranged the structure defintion
without updating the code that kills the vector field. Problem spotted by
divVerent.
Not sure if it actually works as the clients don't render the result
properly (can't see anything where the model should be), but the output
model does import back into blender properly.
Since qf does linear interpolation of verts, this seems to be reasonable.
Certaintly better than the rose-thorns I got because I haven't figured out
how to kick the auto-clamp.
I've decided to use property lists to define mdl control scripts. Some
names will probably get changed, and I still need to write code for writing
a plist, but the hard part is pretty much done :)
Note that this is the data block that holds the list of actual shape-keys,
rather than the shape-keys themselves. I'm not sure what it's correct name
is (it's just "Key" in RNA).
I really dislike this method of setting the name, but the use of "Key" as
the datablock name is actually hard-coded into blender's C code :/
Without fakeuser set, blender will toss out the actions on save and reload.
Converting to an nla strip might take care of that, but I haven't figured
out how to do that yet, so avoid any nasty surprised for the user.
Eye position, auto rotation, sync type and particle effects can now all be
edited in blender: both import and export do the right thing. The settings
can be found in the "QF MDL" panel of the "Object" tab of the properties
view.
Just about to do a release, and I realized windows users wouldn't have any
way of checking out the new renderer. I'll add wglsl when I get a chance to
do some testing.
o All instances of LIBADD/LDADD have a corresponding DEPENDENCIES
specificatiion.
o libraries now use a lib_ldflags macro to keep things consistent
o duplication of source/lib names has been minimized (particularly in
the libraries; more work needs to be done for the executables)
o automake spec blocks have been organized (again, more work needs to be
done for the executables)
Despair has things locked down such that running qfcc during a build fails
due to lack of read access to /usr/local/lib. This is actually a good
thing as accidentally hitting old includes/libs (when a file gets deleted
in the tree) hides bugs. Thus, --no-default-paths to turn off default
search paths.
Despair has things locked down such that running qfcc during a build fails
due to lack of read access to /usr/local/lib. This is actually a good
thing as accidentally hitting old includes/libs (when a file gets deleted
in the tree) hides bugs. Thus, --no-default-paths to turn off default
search paths.
The special token __INFINITY__, like __FILE__ and friends, will expand to
a floating-point expression containing a value the C compiler considers
infinite. Obviously, this assumes that the system has relatively modern
float hardware -- but if it doesn't, having Ruamoko be able to represent
float infinity is the least of your problems. :)
I got rather tired of there being multiple definitions of mostly compatible
plane types (and I need a common type anyway). dplane_t still exists for
now because I want to be careful when messing with the actual bsp format.
The params are eye position, flags and synctype. Provision is made for
reading them from a text block on export, but nothing is done other than
retrieving the text block.
The biggest part of the speedup is reading from blender's image only once
(it seems that every read does so from GL rather than memory: ouch). Also,
cache the results for each color.
The size is actually the average area in quake units of the mesh's
triangles. Again, my results are slightly smaller (0.025).
With this, all calculable fields are set. Only eye position, flags and
synctype remain.
The calculated radius is a smidge (0.05) smaller than the original
(invisibl.mdl), but I think that's due to the difference in source data: id
used the original models, I'm using their output.
Blender must have an active shape key before shape key animation will work.
This fixes the models being locked to the first frame until a shape key is
selected via the UI.
I /did/ see the warning about vertex index 0 in the obj importer script,
but I didn't take it seriously enough. This fixes both the twisted texture
on a couple of faces, and the truly mangled tris when exporting (using
invisibl.mdl for testing).
There seems to be some problems with the UVs, only one frame is exported,
and various model params don't get set (eye position, size, bounding
radius, synctype, flags), but the size and shape look right in qf :).
Except for the normal index in the frame bounds (and potentially frame
names with junk after the terminating nul), the output is identical to the
input for:
mdl=MDL().read("invisibl.mdl")
mdl.write("test.mdl")
But only if they seem to be related (ie, the frame name is the same up to
the number). This will later become optional, but it allows me to test
some of the frame group code.