Now declarations can be deferred too, thus things like generic/template
and inline functions should be possible. However, the most important
thing is this is a step towards a cleaner middle layer for compilation,
separating front-end language from back-end code-gen.
I don't remember why I thought it was a good idea at the time, but I
decided that having the union was a bit iffy and making the list
"official" would be a good idea. In the end, it removed a nice chunk of
code (redundant list manipulations).
I want to use new_field_expr for specialized field expressions instead.
However, I don't particularly like new_deffield_expr as a name, but I
can't think of anything better just yet.
I plan to do this eventually for Ruamoko, but I need it to keep working
for now; it's rather nice having multiple languages. I expect this will
open up a lot of options for inlining, generic/template function
instantiation, etc. Right now, it's helping with specialization
constants in glsl.
Result type and constant handling is now table-driven, resulting in the
removal of seven switch statements (and thus a lot less hassle when
extending types or expressions). Also, (u)long and (u)short are fully
implemented.
In addition, other than result type handing for boolean results, any
back-end specific implementation is now in the back-end.
It's nowhere near complete, but unary and binary expressions that are
marked as constant will not be subject to constant folding. This is
necessary for proper support of specialization constants.
I don't know why I thought it was a good idea to make sy_var context
dependent. Renaming sy_var to sy_def makes it a little easier to know to
use the def field, too.
Thare are still many const casts, but this does get rid of one set. I
had tried to replace the paren flag with a () unary expression, but that
brought out a whole pile of places that had problems (especially
anything to do with boolean expressions).
It seems it was needed for dealing with the result expression for block
expressions, but it turns out (possibly thanks to dags), that it's easy
to check for the result value and using the appropriate call to emit the
code thus avoiding the non-executable code warning.
Attributes seem appropriate as GLSL's qualifiers affect variables rather
than types (since there's no typedef).
Not much is done with the attributes yet other than some basic error
checking (duplicates of non-layout attributes) and debug output, but
most (if not all) declarations get to the declaration code with
attributes intact.
Their size is now calculated correctly, they can be assigned,
initialized using block initializers (vectors too!), and columns can be
indexed as vector lvalues.
It turned out that for v6 progs (due to lack of double or long) weren't
getting correctly parsed vector literals: incorrect "implicit" flag and
then a lot of brittleness around constant value conversions.
Now parameters can be declared `const`, `@in`, `@out`, `@inout`. `@in`
is redundant as it's the default, but I guess it's nice for
self-documenting code. `const` marks the parameter as read-only in the
function, `@out` and `@inout` allow the parameter to pass the value back
out (by copy), but `@out` does not initialize the parameter before
calling and returning without setting an `@out` parameter is an error
(but unfortunately, currently detected only when optimizing).
Unfortunately, it seems to have broken (only!) v6 progs when optimizing
as the second parameter gets optimized out.
Most of them were noise from the type const correctness pass, but the
qc field function handling was always dubious (though in practice safe
due to how the type was built, but...). The remaining casts outside of
type.c need some thought.
While they might be ok, I expect them to cause some issues when doing
compile-time evaluations of type expressions, so use of dags seems to be
a premature optimization. However, as the "no dags" flag is propagated
to parent expression nodes, it may prove useful in other contexts.
This gets the types such that either there is only one definition, or C
sees the same name for what is essentially the same type despite there
being multiple local definitions.
It's disabled by default because it's a runtime thing and I'm not sure I
want to keep it enabled, but it did find some issues (which I've cleaned
up), although it didn't find the problem I was looking for :P
Two birds with one stone: eliminates most of the problems with going
const-correct with expr_t, and it make dealing with internally generated
expressions at random locations much easier as the set source location
affects all new expressions created within that scope, to any depth.
Debug output is much easier to read now.
There were a few places where some const-casts were needed, but they're
localized to code that's supposed to manipulate types (but I do want to
come up with something to clean that up).
I'm not sure the regressive product is right (overall sign), but that's
actually partly a problem in the math itself (duals and the regressive
product still get poked at, so it may be just a matter of
interpretation).
This makes a slight improvement to the commutator product in that it
removes the expand statement, but there's still the problem of (a+a)/2.
However, at least now the product is correct and slightly less abysmal.
This takes advantage of evaluate_constexpr to do all the work. Necessary
for use of basis blade constants in algebra contexts (avoids an internal
error).
I had wanted to do this earlier but shied away from the large edit. Now
it became more necessary (and will become even more necessary when I get
to the glsl front-end).