I decided that the check for whether control reaches the end of the
function without performing some necessary action (eg, invoking
[super dealoc] in a derived -dealoc) is conceptually the return
statement using a pseudo operand and the necessary action defining that
pseudo operand and thus is the same as checking for uninitialised
variables. Thus, add a pseudo operand type and use one to represent the
invocation of [super alloc], with a special function to call when the
"used" pseudo operand is "uninitialised".
While I currently don't know what else pseudo operands could be used
for, the system should be flexible enough to add any check.
Fixes#24
There's still some cleanup to do, but everything seems to be working
nicely: `make -j` works, `make distcheck` passes. There is probably
plenty of bitrot in the package directories (RPM, debian), though.
The vc project files have been removed since those versions are way out
of date and quakeforge is pretty much dependent on gcc now anyway.
Most of the old Makefile.am files are now Makemodule.am. This should
allow for new Makefile.am files that allow local building (to be added
on an as-needed bases). The current remaining Makefile.am files are for
standalone sub-projects.a
The installable bins are currently built in the top-level build
directory. This may change if the clutter gets to be too much.
While this does make a noticeable difference in build times, the main
reason for the switch was to take care of the growing dependency issues:
now it's possible to build tools for code generation (eg, using qfcc and
ruamoko programs for code-gen).
Nifty: if you pass a struct via reference to a function, and a field of
that struct may be both set and not set (eg, set only in an if statement),
gcc will report that field assuming that fields that are never set will be
set by the function (my interpretation).
* taniwha ponders the flow analysis for that
With the need to handle aliasing in the optimizer, it has become apparent
that having the flow data attached to symbols is not nearly as useful as
having it attached to defs (which are views of the actual variables).
This also involves a bit of a cleanup of operand types: op_pointer and
op_alias are gone (this seems to greatly simplify the optimizer)
There is a bit of a problem with enums in switch statements, but this might
actually be a sign that something is not quite right in the switch code
(other than enums not being recognized as ints for jump table
optimization).
With this, alias defs become singletons based on the def they alias and the
type and offset of the alias. Thus, the removal of the free_def call in
emit.c.
alias_def now always creates an offset def (though the usual case has an
offset of 0). The if the alias escapes the bounds of the base def, an
internal error will be generated.
With the intoduction of the statement type enum came a prefix clash. As
"st" makes sense for "statement type", I decided that "storage class"
should be "sc". Although there haven't been any problems as of yet, I
decided it would be a good idea to clean up the clash now. It also helps
avoid confusion (I was a bit surprised after working with st_assign etc to
be reminded of st_extern etc).
With temp types changing and temps being reused within the one instruction,
the def type is no longer usable for selecting the opcode. However, the
operand types are stable and more correct.
The actual bug might still be elsewhere, but at least now I know the alias
chains were coming from accessing .return and .param_N, which are unions
(not directly usable by the progs engine). Emitting a reference to a union
(or struct) would create an alias def, but an alias expression was created
in the expression tree to simplify return/param access. The double layer
(sometimes 3 or 4) alias isn't really neaded, so rather than layering the
aliases, just re-alias the alaised def.
Statement operands throw away the high level type information, so store
type size in the operand and use this size for allocating space for temps
rather than using the low-level type.
Access to struct fields in near data can be done using only one operand,
but offset relocs need to be used. However, as not all defs want offset
relocs, a flag has been added to the def struct.
The space is meaningless for op_* relocations as they are always in the
code space, but def_* relocations need to know which space holds the
location to be adjusted.
As a short value fits directly into a statement, it needs a fake def that
holds its value in the def's offset in order for the value to be written to
the statement.
Separate compilation will take fixing object files.
The generated code is broken due to various relocation fixups being
broken, and float immediates seem to be badly broken.
Debug information is broken too.