This fixes a segfault when optimizing the empty-body test. The label was
getting moved, but the statement block to which it pointed was not updated
and thus it pointed to dead data.
Currently, they can represent either vectors or quaternions, and the
quaternions can be in either [s, v] form or [w, x, y, z] form.
Many things will not actual work yet as the vector expression needs to be
converted into the appropriate form for assigning the elements to the
components of the "vector" type.
Rather than prefixing free_ to the supplied name, suffix _freelist to the
supplied name. The biggest advantage of this is it allows the free-list to
be a structure member. It also cleans up the name-space a little.
If the final block ends in a conditional statement, appending return to the
block will hide the conditional statement from the flow analyzer. This may
cause the conditional statement's destination node be become unreachable
according to the analyzer and thus eliminated. The label for the branch
then loses its target sblock and thus the code generator will produce a
zero-distance jump resulting in an infinite loop.
Thus, if the final block ends in a conditional statement (or, for
completeness, a call statement), append a new empty block before adding the
return statement.
It turns out the recent dead-block code "broke" vector component access
from objects. The breakage is really highlighting a problem with temporary
operands and aliasing. The problem was hiding behind a basic-block split
that the recent dead-block work mended and thus exposed the bug.
It uses the new block merge code. Now forgotten return statements are
detected properly (naive dead block removal) and all unreachable code is
eliminated (flow analysis unreachable node removal).
This reverts commit 83ead0842f.
Note: does not compile.
It turns out basic dead block removal is needed for the "control reaches
end of non-void function" warning to work correctly.
Empty sblocks are removed (unless it's the only sblock), and blocks that
are split unnecessarily are merged.
This mostly fixes bogus "no return" warnings.
At the statement level, all pointer types are the same, so just return the
op obtained from the sub-expression when the low-level type of the alias
expression matches the low-level type of the type of type sub-expression
operand.
With this, the alias of a value code can be removed (I always thought it
was wrong), which is what broke calling obj_msgSend_super (type &.super
param lost the &).
Now I have to deal with pointer values in the optimizer :/
Also move the ALLOC/FREE macros from qfcc.h to QF/alloc.h (needed to for
set.c).
Both modules are more generally useful than just for qfcc (eg, set
builtins for ruamoko).
Aliasing the jump table to an integer broke statement_get_targetlist with
the new alias def handling, and was really wrong anyway. I probably did
that due to being fed up with things and wanting to get qfcc working again
rather than spending time getting jumpb right.
With the need to handle aliasing in the optimizer, it has become apparent
that having the flow data attached to symbols is not nearly as useful as
having it attached to defs (which are views of the actual variables).
This also involves a bit of a cleanup of operand types: op_pointer and
op_alias are gone (this seems to greatly simplify the optimizer)
There is a bit of a problem with enums in switch statements, but this might
actually be a sign that something is not quite right in the switch code
(other than enums not being recognized as ints for jump table
optimization).
With the intoduction of the statement type enum came a prefix clash. As
"st" makes sense for "statement type", I decided that "storage class"
should be "sc". Although there haven't been any problems as of yet, I
decided it would be a good idea to clean up the clash now. It also helps
avoid confusion (I was a bit surprised after working with st_assign etc to
be reminded of st_extern etc).
It doesn't quite work yet, but...
It has proven necessary to know what type .return has at any point in the
function. The segfault in ctf is caused by the return statement added to
the end of the void function messing with the expr pointer stored in the
daglabel for .return. While this is actually by design (though the
statement really should have a valid expr pointer rather than), it actually
highlights a bigger problem: there's no stable knowledge of the current
type of .return. This is not a problem in expression statements as the
dagnodes for expression statements store the desired types of all operands.
However, when assigning from .return to attached variables in a leaf node,
the type of .return is not stored anywhere but the expression last
accessing .return.
They really should have been in statements.[ch] in the first place
(actually, they sort of were: is_goto etc, so some redundant code has been
removed, too).
Modifying the existing alias chain proved to be a bad idea (in retrospect,
I should have known better:P). Instead, just walk down any existing alias
chain to the root operand and build a new alias from that.