When the naive uninitialized variable detection finds a node with possible
uses of uninitialized variables, the statements in the node are scanned one
at a time checking each usage and removing uninitialized definitions as
appropriate. vectest.r now compiles without warnings. As an added bonus,
accurate line number information is reported for uninitialized variables.
Unfortunately, there is still a problem with uninitialized temps in
switch.r, but that might just be poor handling of temp op aliases.
Only definitions for the def used in the current statement (whether an
alias or not) are suitable for killing. Doing otherwise defeats the purpose
of this work :P
Fixes the false negatives found in a modified quattest.r (commented out the
"tq.s = 0;" line).
Nicely, the use sets from live_variable analysis can be used too, though
there are some problems with the naive implementation. For:
vector foo (float x, float y, float z)
{
vector v;
v.x = x;
v.y = y;
v.z = z;
return v;
}
qfcc thinks v is uninitialized, but if "if (x) return nil;" (or any other
basic-block splitter) is put just before the return v; qfcc correctly
detects that v is initialized. The reason is that the inits are in the same
basic block as the return, and thus aren't affecting the reaching
definitions, which are stored per-block.
The naive implementation should be good for a fast-cull before doing a
per-statement check.
The exit dummy block is setup to provide dummy uses of global variables to
the live variable analysis doesn't miss global variables. Much cleaner than
the previous code :) There may be some issues with aliases, though.
The entry dummy block is setup to provide dummy definitions of local
variables so the reaching definitions analysis can be used to detect
uninitialized variables (not implemented yet). Fake statement numbers
(func->num_statements + X) are used to represent the definitions. Local
variables (ie, not temp ops) use their offsets (ie, the offset range they
cover) for X. Temp ops use their flowvar number + the size of the
function's defspace for X. flow_kill_aliases() should take care of temp op
aliasing, while the use of the actual offsets spanned by the variable's def
should take care of any wild aliasing so structures and unions should
become a non-issue.
The dummy nodes are for detectining uninitialized variables (entry dummy)
and making globals live at function exit (exit dummy). The reaching defs
and live vars code currently seg because neither node has had its sets
initialized.
Fixed aliases are those that will never change through the life of the
code. They are generated from structure accesses and thus what they alias
is always known.
Also move the ALLOC/FREE macros from qfcc.h to QF/alloc.h (needed to for
set.c).
Both modules are more generally useful than just for qfcc (eg, set
builtins for ruamoko).
Set of everything is implemented by inverting the meaning of bits in the
bitmap: 1 becomes non-member, 0 member. This means that set_size and
set_first/set_next become inverted and represent non-members as counting
members becomes impossible :)
Aliasing the jump table to an integer broke statement_get_targetlist with
the new alias def handling, and was really wrong anyway. I probably did
that due to being fed up with things and wanting to get qfcc working again
rather than spending time getting jumpb right.
With the need to handle aliasing in the optimizer, it has become apparent
that having the flow data attached to symbols is not nearly as useful as
having it attached to defs (which are views of the actual variables).
This also involves a bit of a cleanup of operand types: op_pointer and
op_alias are gone (this seems to greatly simplify the optimizer)
There is a bit of a problem with enums in switch statements, but this might
actually be a sign that something is not quite right in the switch code
(other than enums not being recognized as ints for jump table
optimization).
Turns out there was only one place to fix (for qc, anyway: I don't have
tests for qp yet). func-static now passes :)
Hmm, how to test for static var naming... (not implemented yet)
Simply "backed" and "virutal". Backed spaces have memory allocated to them
while virtual spaces do not. Virtual spaces are intended for local
variables and entity fields.
It turns out they're not getting allocated properly (they're put in the
function's locals defspace rather than near data), but fixing it proved a
little more problematic than expected, so the test is marked as XFAIL for
now to remind me to fix it.
With this, alias defs become singletons based on the def they alias and the
type and offset of the alias. Thus, the removal of the free_def call in
emit.c.
alias_def now always creates an offset def (though the usual case has an
offset of 0). The if the alias escapes the bounds of the base def, an
internal error will be generated.
It really doesn't seem wise to allow the compiler to do so as it would
overwrite unrelated defs. The only time such a thing is valid is the return
statement (silly vm design), and that's read-only.