It now takes a context pointer (opaque data) that holds the buffers it
uses for the temporary strings. If the context pointer is null, a static
context is used (making those uses of va NOT thread-safe). Most calls to
va use the static context, but all such calls have been formatted
consistently so they are easy to find when it comes time to do a full
audit.
Block expressions hide ex_error, but get_type() always returns null when
it finds one (which it does by recursing into block expression), so just
check the type itself.
There's still some cleanup to do, but everything seems to be working
nicely: `make -j` works, `make distcheck` passes. There is probably
plenty of bitrot in the package directories (RPM, debian), though.
The vc project files have been removed since those versions are way out
of date and quakeforge is pretty much dependent on gcc now anyway.
Most of the old Makefile.am files are now Makemodule.am. This should
allow for new Makefile.am files that allow local building (to be added
on an as-needed bases). The current remaining Makefile.am files are for
standalone sub-projects.a
The installable bins are currently built in the top-level build
directory. This may change if the clutter gets to be too much.
While this does make a noticeable difference in build times, the main
reason for the switch was to take care of the growing dependency issues:
now it's possible to build tools for code generation (eg, using qfcc and
ruamoko programs for code-gen).
When aliasing a type that already has aliases, the top node needs to be
replaced if it is unnamed, or the alias-free branch of the new node
needs to reach around to the alias-free branch of the existing node.
This fixes the bogus param counts in qwaq.
This eases type unaliasing on functions a little.
Still more to to go, but this fixes a really hair-pulling bug: linux's
heap randomiser was making the typedef test fail randomly whenever
typedef.qfo was compiled.
When a type is aliased, the alias has two type chains: the simple type
chain with all other aliases stripped, and the full type chain. There
are still plenty of bugs in it, but having the clean type chain takes
care of the major issue that was in the previous attempt as only the
head of the type-chain needs to be skipped for type comparison.
Most of the bugs are in finding the locations where the head needs to be
skipped.
All simple type checks are now done using is_* helper functions. This
will help hide the implementation details of the type system from the
rest of the compiler (especially the changes needed for type aliasing).
This reverts commit c78d15b331.
While a block expression's result may be an l-value, block expressions
are not (and their results may not be), thus taking the address of one
is not really correct. It seems the only place that tries to do so is
the assignment code when dealing with structures.
This reverts commit b49d90e769.
I suspect this was a workaround for the mess in assignment chains.
However, it caused compile errors with the new implementation, and is
just bogus anyway.
Now convert_nil only assigns the nil expression a type, and nil makes
its way down to the statement emission code (where it belongs, really).
Breaks even more things :)
It's not possible to take the address of constants (at this stage) and
trying to use a move instruction with .zero as source would result in
the VM complaining about null pointer access when bounds checking is on.
Thus, don't convert a nil source expression until it is known to be
safe, and use memset when it is not.
This fixes the problem of using the return value of a function as an
element in a compound initializer. The cause of the problem is that
compound initializers were represented by block expressions, but
function calls are contained within block expressions, so def
initialization saw the block expression and thought it was a nested
compound initializer.
Technically, it was a bug in the nested element parsing code in that it
wasn't checking the result value of the block expression, but using a
whole new expression type makes things much cleaner and the work done
paves the way for labeled initializers and compound assignments.
Not that it really makes any difference for labels since they're
guaranteed unique, but it does remove the question of "why nva instead
of save_string?". Looking at history, save_string came after I changed
it from strdup (va()) to nva(), and then either didn't think to look for
nva or thought it wasn't worth changing.
Multi-line calls (especially messages) got rather confusing to read as
the lines jumped back and forth. Now the binding is better but the dags
code is reordering the parameters sometimes.
The server code is not yet ready for doubles, especially in its varargs
builtins: they expect only floats. When float promotion is enabled
(default for advanced code, disabled for traditional or v6only),
"@float_promoted@" is written to the prog's strings.
While expression symbols worked for what they are, they weren't so good
for ivar access because every ivar of a class (and its super classes)
would be accessed at method scope creation, generating spurious access
errors if any were private. That is, when the access checks worked at
all.
Unlike gcc, qfcc requires foo to be defined, not just declared (I
suspect this is a bug in gcc, or even the ObjC spec), because allowing
forward declarations causes an empty (no methods) protocol to be
emitted, and then when the protocol is actually defined, one with
methods, resulting in two different versions of the same protocol, which
comments in the gnu objc runtime specifically state is a problem but is
not checked because it "never happens in practice" (found while
investigating gcc's behavior with @protocol and just what some of the
comments about static instance lists meant).
It proved to be too fragile in its current implementation. It broke
pointers to incomplete structs and switch enum checking, and getting it
to work for other things was overly invasive. I still want the encoding,
but need to come up with something more robust.a
It was long wrong anyway as it checked past the end of the function's
parameters, which caused a segfault when calling varargs functions with
no formal parameters.
Only as scalars, I still need to think about what to do for vectors and
quaternions due to param size issues. Also, doubles are not yet
guaranteed to be correctly aligned.
This is where constant folding should have happened all along. While
unary_expr should fold constants too, it seems to already try to do so
and it's a bit much of a mess to clean up right now.
After messing with SIMD stuff for a little, I think I now understand why
the industry went with xyzw instead of the mathematical wxyz. Anyway, this
will make for less pain in the future (assuming I got everything).
Saw a discussion of such in #qc and that gcc implemented it. I realized it
would be pretty easy to detect and very useful (I've made such mistakes at
times).
It is now in its own file and uses table lookups to check for valid type
and operator combinations, and also the resulting type of the expression.
This probably breaks multiple function calls in the one expression.
This is a bit of a workaround to ensure the operands have their types
setup correctly. Really, binary_expr needs to handle expression types
properly.
This fixes the bogus error for comparing the result of pointer subtraction
with an integer.
Currently, they can represent either vectors or quaternions, and the
quaternions can be in either [s, v] form or [w, x, y, z] form.
Many things will not actual work yet as the vector expression needs to be
converted into the appropriate form for assigning the elements to the
components of the "vector" type.
This is a nice feature found in fteqcc (also a bit of a challenge from
Spike). Getting bison to accept the new expression required rewriting the
state expression grammar, so this is mostly for the state expression. A
test to ensure the state expression doesn't break is included.
This goes towards complementing the "if not" logic extension. I need to
check if fteqcc supports "not" with "while" (the version I have access to
at the moment does not), and also whether it would be good to support
"not" with "for", and if so, what form the syntax should take.
It is syntactic sugar for if (!(foo)), but is useful for avoiding
inconsistencies between such things as if (string) and if (!string), even
though qcc can't parse if not (string). It also makes for easier to read
code when the logic in the condition is complex.
Rather than prefixing free_ to the supplied name, suffix _freelist to the
supplied name. The biggest advantage of this is it allows the free-list to
be a structure member. It also cleans up the name-space a little.