Now declarations can be deferred too, thus things like generic/template
and inline functions should be possible. However, the most important
thing is this is a step towards a cleaner middle layer for compilation,
separating front-end language from back-end code-gen.
I plan to do this eventually for Ruamoko, but I need it to keep working
for now; it's rather nice having multiple languages. I expect this will
open up a lot of options for inlining, generic/template function
instantiation, etc. Right now, it's helping with specialization
constants in glsl.
Now parameters can be declared `const`, `@in`, `@out`, `@inout`. `@in`
is redundant as it's the default, but I guess it's nice for
self-documenting code. `const` marks the parameter as read-only in the
function, `@out` and `@inout` allow the parameter to pass the value back
out (by copy), but `@out` does not initialize the parameter before
calling and returning without setting an `@out` parameter is an error
(but unfortunately, currently detected only when optimizing).
Unfortunately, it seems to have broken (only!) v6 progs when optimizing
as the second parameter gets optimized out.
While they might be ok, I expect them to cause some issues when doing
compile-time evaluations of type expressions, so use of dags seems to be
a premature optimization. However, as the "no dags" flag is propagated
to parent expression nodes, it may prove useful in other contexts.
Or at least mostly so (there are a few casts). This doesn't fix the
motor bug, but I've wanted to do this for over twenty years and at least
I know what's not causing the bug. However, disabling fold_constants in
expr_algebra.c does "fix" things, so it's still a good place to look.
They don't have much effect that I've noticed, but the expression dags
code does check for commutative expressions. The algebra code uses the
anticommutative flag for cross, wedge and subtract (unconditional at
this stage). Integer ops that are commutative are always commutative (or
anticommutative). Floating point ops can be controlled (default to non),
but no way to set the options currently.
Especially binary expressions. That expressions can now be reused is
what caused the need to make expression lists non-invasive: the reuse
resulted in loops in the lists. This doesn't directly affect code
generation at this stage but it will help with optimizing algebraic
expressions.
The dags are per sequence point (as per my reading of the C spec).