Along with QuakeC's, of course. This fixes type typeredef2 test (a lot
of work for one little syntax error). Unfortunately, it came at the cost
of requiring `>>` in front of state expressions on C-style functions
(QuakeC-style functions are unaffected). Also, there are now two
shift/reduce conflicts with structs and unions (but these same conflicts
are in gcc 3.4).
This has highlighted the need for having the equivalent of the
expression tree for the declaration system as there are now several
hacks to deal with the separation of types and declarators. But that's a
job for another week.
The grammar constructs for declarations come from gcc 3.4's parser (I
think it's the last version of gcc that used bison. Also, 3.4 is still
GPL 2, so no chance of an issue there).
This simplifies type type_specifier rule significantly as now TYPE_SPEC
(was TYPE) includes all types and their basic modifiers (long, short,
signed, unsigned). This should allow me to make the type system closer
to gcc's (as of 3.4 as that seems to be the last version that used a
bison parser) and thus fix typeredef2.
While the option to make '*' mean dot product for vectors is important,
it breaks vector scaling in ruamoko progs as the resultant vector op
becomes a dot product instead of the indented hadamard product (ie,
component-wise).
The support for the new vector types broke compiling code using
--advanced. Thus it's necessary to ensure vector constants are
float-type and vec3 and vec4 are treated as vector and quaternion, which
meant resurrecting the old vector expression code for v6p progs.
It seems clang loses track of the usage of the referenced unions by the
time the code leaves the switch. Due to the misoptimization, "random"
values would get into the vector constants. This puts the usages in the
same blocks as the unions, causing clang to "get it right" (though I
strongly suspect I was running into UB).
This allows all the tests to build and pass. I'll need to add tests to
ensure warnings happen when they should and that all vec operations are
correct (ouch, that'll be a lot of work), but vectors and quaternions
are working again.
With this, all vector widths and types are supported: 2, 3, 4 and int,
uint, long, ulong, float and double, along with support for suffixes to
make the type explicit: '1 2'd specifies a dvec2 constant, while '1 2 3'u
is a uivec3 constant. Default types are double (dvec2, dvec3, dvec4) for
literals with float-type components, and int (ivec2...) for those with
integer-type components.
Currently only via pragma (not command line options), but I needed to
test the concept. Converting legacy code is just too error prone.
Telling the compiler how to treat the operator makes more sense. When *
acts as @dot with Ruamoko progs, the result is automatically aliased as
a float as this is the legacy meaning (ie, float result for dot
product).
This is achieved by marking a void function with the void_return
attribute and then calling that function in an @return expression.
@return can be used only inside a void function and only with void
functions marked with the void_return attribute. As this is intended for
Objective-QC message forwarding, it is deliberately "difficult" to use
as returning a larger than expected value is unlikely to end well for
the calling function.
However, as a convenience, "@return nil" is allowed (in a void
function). It always returns an integer (which, of course,can be
interpreted as a pointer). This is safe because if the return value is
ignored, it will go into the progs return buffer, and if it is not
ignored, it is the smallest value that can be returned.
They're now properly part of the type system and can be used for
declaring variables, initialized (using {} block initializers), operated
on (=, *, + tested) though much work needs to be done on binary
expressions, and indexed. So far, only ivec2 has been tested.
Ruamoko passes va_list (@args) through the ... parameter (as such), but
IMP uses ... to defeat parameter type and count checking and doesn't
want va_list. While possibly not the best solution, adding a no_va_list
flag to function types and skipping ex_args entirely does take care of
the problem without hard-coding anything specific to IMP.
The system currently just sets some bits in the type specifier (the
attribute list should probably be carried around with the specifier),
but it gets the job done for now, and at least gets things started.
With explicit operators, even. While they're a tad verbose, they're at
least unambiguous and most importantly have the right precedence (or at
least adjustable precedence if I got it wrong, but vector ops having
high precedence than scalar or component seems reasonable to me).
long is ignored for double, and v6p progs are stuck with 32 bits for
longs (don't feel like extending v6p any further), but the basics are
there for Ruamoko.
short is ignored for ints because the minimum size is 32, and signed is
just noise for ints anyway (and no chars, so...).
unsigned, however, is finally implemented properly (or at least seems to
be working correctly: tests pass after getting things compiling again,
and lt.u is used where it should be :)
And other related fields so integer is now int (and uinteger is uint). I
really don't know why I went with integer in the first place, but this
will make using macros easier for dealing with types.
There's still some cleanup to do, but everything seems to be working
nicely: `make -j` works, `make distcheck` passes. There is probably
plenty of bitrot in the package directories (RPM, debian), though.
The vc project files have been removed since those versions are way out
of date and quakeforge is pretty much dependent on gcc now anyway.
Most of the old Makefile.am files are now Makemodule.am. This should
allow for new Makefile.am files that allow local building (to be added
on an as-needed bases). The current remaining Makefile.am files are for
standalone sub-projects.a
The installable bins are currently built in the top-level build
directory. This may change if the clutter gets to be too much.
While this does make a noticeable difference in build times, the main
reason for the switch was to take care of the growing dependency issues:
now it's possible to build tools for code generation (eg, using qfcc and
ruamoko programs for code-gen).
They take a pointer to a free-list used for hashlinks so the hashlink
pools can be per-thread. However, hash tables that are not updated are
always thread-safe, so this affects only updates. progs_t has been set
up such that it is easy for multiple progs within one thread can share
hashlinks.
Only as scalars, I still need to think about what to do for vectors and
quaternions due to param size issues. Also, doubles are not yet
guaranteed to be correctly aligned.
It is syntactic sugar for if (!(foo)), but is useful for avoiding
inconsistencies between such things as if (string) and if (!string), even
though qcc can't parse if not (string). It also makes for easier to read
code when the logic in the condition is complex.
The keywords table was rather awkward to edit (and sometimes confusing).
Worse, because the hash table used to look up the keywords was initialized
only once, changing modes in the same execution of qfcc would not work
properly as keywords would not be added or removed as appropriate.
Now there are four categories of keywords:
o "core" Always available. They form the core of QuakeC except for two
extensions.
o "@" In extended and advanced modes, the preceeding @ is optional,
but tranditional mode requires the keywords to be preceeded by
an @. They are the C keywords that QuakeC did not use, but can
be implemented in v6 progs under certain circumstances.
o "QF" These keywords require the QuakeForge VM to be usable.
o "Obj" These keywords form Ruamoko/Objective-QuakeC and require both
advanced mode and the QuakeForge VM.
This is needed to allow compile-time protocol conformance checks, though
nothing along those lines has been implemented yet.
id has been changed from TYPE to OBJECT, required to allow id <proto> to be
parsed. OBJECT uses symbol, allowing id to be redefined once suitable work
has been done on the parser.
qfcc now does local common subexpression elimination. It seems to work, but
is optional (default off): use -O to enable. Also, uninitialized variable
detection is finally back :)
The progs engine now has very basic valgrind-like functionality for
checking pointer accesses. Enable with pr_boundscheck 2
The evil comment is not just "pragmas are bad, ok?", but switching between
advanced, extended and tradtitional modes when compiling truly is evil and
not guaranteed to work. However, I needed it to make building test cases
easier (it's mostly ok to go from advanced to extended or tradtional, but
going the other way will probably cause all sorts of fun).
In the process, opcode_init now copies the opcode table data rather than
modifying it.
After running across a question about lists of animation frames and states,
I decided giving qfcc the ability to generate such lists might be a nice
distraction from the optimizer :) Works for both progs.src and separate
compilation. No frame file is generated if no macros have been created.
All internal structs now have "proper" names, and fit the naming convention
(eg, obj_module (like objective-c's types, but obj instead of objc). Some
redundant types got removed (holdovers from before proper struct tag
handling).
Also, it has proven to be unnecessary to build internal classes, so
make_class and make_class_struct are gone, too.
Since gnu bison and flex are required anyway, no harm in using their api
prefix options. Now, qfcc can compile both QC/Ruamoko and Pascal files
(Pascal is (currently?) NOT supported in progs.src mode), selecting the
language based on the extension: .r, .qc and .c select QC/Ruamoko, .pas and
.p select Pascal, while anything else is treated as an object file (as
before).