I knew counting bits individually was slow, but it never really mattered
until now. However, I didn't expect such a dramatic boost just by going
to mapping bytes to bit counts. 16-bit words would be faster still, but
the 64kB lookup table would probably start hurting cache performance,
and 32-bit words (4GB table) definitely would ruin the cache. The
universe isn't big enough for 64-bits :)
After seeing set_size and thinking it redundant (thought it returned the
capacity of the set until I checked), I realized set_count would be a
much better name (set_count (node->successors) in qfcc does make much
more sense).
Having set_expand exposed is useful for loading data into a set.
However, it turns out there was a bug in its size calculation in that
when the requested set size was a multiple of SET_BITS (and greater than
the current set size), the new set size one be SET_BITS larger than
requested. There's now some tests for this :)
set_bits_t is now 64 bits for x86_64 machines (in linux, anyway). This gave
qfvis a huge speed boost: from ~815s to ~720s.
Also, expose some of the set internals so custom set operators can be
created.
Rather than prefixing free_ to the supplied name, suffix _freelist to the
supplied name. The biggest advantage of this is it allows the free-list to
be a structure member. It also cleans up the name-space a little.
Getting everything right with an enum proved to be too difficult if not
impossible. Also use better tests for equivalence and intersection.
Many more tests have been added. All pass :)
Also move the ALLOC/FREE macros from qfcc.h to QF/alloc.h (needed to for
set.c).
Both modules are more generally useful than just for qfcc (eg, set
builtins for ruamoko).