It seems mesa still has the bug where non-array attributes don't work
when set as attribute 0, and that the allocation order changed sometime
since I last tested with mesa. This fixes the black world and flickering
alias models on my eeepc.
So far, alias model rendering is the only victim, but things are working,
even if only color map lookup and fog blending are broken out at this
stage.
I expect the effect naming scheme will go through some changes until I'm
happy with it.
Again, based on The OpenGL Shader Wrangler. The wrangling part is not used
yet, but the shader compiler has been modified to take the built up shader.
Just to keep things compiling, a wrapper has been temporarily created.
The idea comes from The OpenGL Shader Wrangler
(http://prideout.net/blog/?p=11). Text files are broken up into chunks via
lines beginning with -- (^-- in regex). The chunks are optionally named
with tags of the form: [0-9A-Za-z._]+. Unnamed chunks cannot be found.
Searching for chunks looks for the longest tag that matches the beginning
of the search tag (eg, a chunk named "Vertex" will be found with a search
tag of "Vertex.foo"). Note that '.' forms the units for the searc
("Vertex.foo" will not find "Vertex.f").
Unlike glsw, this implementation does not have the concept of effects keys
as that will be separate. Also, this implementation takes strings rather
than file names (thus is more generally useful).
This is based on ccr's patch, but a little more thorough (he missed some
potential problems) and probably more readable (the original code wasn't
the greatest (still isn't, but...))..
It returns the rest of the line (minus // style comments) as the token. I
needed it in another project but this is my central repository for
script.py.
Saw a discussion of such in #qc and that gcc implemented it. I realized it
would be pretty easy to detect and very useful (I've made such mistakes at
times).
It is now in its own file and uses table lookups to check for valid type
and operator combinations, and also the resulting type of the expression.
This probably breaks multiple function calls in the one expression.
This is a bit of a workaround to ensure the operands have their types
setup correctly. Really, binary_expr needs to handle expression types
properly.
This fixes the bogus error for comparing the result of pointer subtraction
with an integer.
Currently, they can represent either vectors or quaternions, and the
quaternions can be in either [s, v] form or [w, x, y, z] form.
Many things will not actual work yet as the vector expression needs to be
converted into the appropriate form for assigning the elements to the
components of the "vector" type.
It's sometimes more useful to have direct access to each individual
component of the imaginary part of the quaternion, and then for
consistency, alias w and s.
This is a nice feature found in fteqcc (also a bit of a challenge from
Spike). Getting bison to accept the new expression required rewriting the
state expression grammar, so this is mostly for the state expression. A
test to ensure the state expression doesn't break is included.
I think it may have been for compatibility with a certain qcc variant (no
idea which one, though). While the shift/reduce conflict is fixable using
"%prec IFX" on the const:string rule, the colon breaks test?"a":"b".
Putting parentheses around "a" allows such a construct, requiring them
breaks comatibility with C. I think this feature just isn't worth that.
This goes towards complementing the "if not" logic extension. I need to
check if fteqcc supports "not" with "while" (the version I have access to
at the moment does not), and also whether it would be good to support
"not" with "for", and if so, what form the syntax should take.
It is syntactic sugar for if (!(foo)), but is useful for avoiding
inconsistencies between such things as if (string) and if (!string), even
though qcc can't parse if not (string). It also makes for easier to read
code when the logic in the condition is complex.
It turns out this is required for compatibility with qcc (and C, really).
Once string to boolean conversions are sorted out completely (not that
simple as qcc is inconsistent with if (string) vs if (!string)), Qgets can
be implemented :)