The goal is to make it easy to get size/coord/base types from image
types without creating a zillion type functions.
It was necessary to make it possible for any type to have an attribute
function (returns an expression so it can be more useful: types are
returned via type expressions). Algebra types were the first victim
(which was nice for testing).
They should now work in generic contexts, but the pressing need to work
on arrays was due to constant expressions for element counts breaking.
As a side effect, function pointers are now a thing (and seem to work
like they do in C)
If the block's result is just a variable reference, it won't match any
expression in the block's list so it needs to be processed independently
in such cases. The `mix(genFType x, genFType y, float a)` inline now
gets as far as spir-v code gen although there are still many issues to
fix (parameter symbols, `return` handling, etc).
xvalue symbols refer to two expressions: an lvalue and an rvalue. They
are meant to be used with xvalue expressions.
xvalue expressions are useful when a distinction must be made between
the behavior of something (eg, a pascal function symbol) must change
depending on whether it's an lvalue (assignment of the function's return
value) or an rvalue (a call to the function, especially when the
function takes no parameters).
The main goal was to make it possible to give generic functions
definitions (since the code would be very dependent on the actual
parameter types), but will also allow for inline functions. It also
helped move a lot of the back-end dependent code out of semantics
processing and almost completely (if not completely) out of the parser.
Possibly more importantly, it gets the dags flushing out of the parser,
which means such is now shared by all front-ends.
There's probably a lot of dead code in expr.c now, but that can be taken
care of another time.
Arrays done via the field code since they use the same opcode and logic.
For now swizzles are just swizzles and don't support zeroing or negating
(but doing one or the other (not both) should be easy).
Result type and constant handling is now table-driven, resulting in the
removal of seven switch statements (and thus a lot less hassle when
extending types or expressions). Also, (u)long and (u)short are fully
implemented.
In addition, other than result type handing for boolean results, any
back-end specific implementation is now in the back-end.
This gets the types such that either there is only one definition, or C
sees the same name for what is essentially the same type despite there
being multiple local definitions.
Just running through the list of expressions in a block expression
results in label expressions within the block getting printed by
expressions that reference them and thus don't receive the correct next
pointer and wind up pointing to themselves. Printing the labels first
ensures they have the correct next pointer. However, I suspect there are
other ways things will get tangled.
I had wanted to do this earlier but shied away from the large edit. Now
it became more necessary (and will become even more necessary when I get
to the glsl front-end).
It's now meant only for ALLOC. Interestingly, when DEBUG_QF_MEMORY is
defined in expr.c, something breaks badly with vkgen (no sniffles out of
valgrind, though), but everything is fine with it not defined. It seems
there may be some unpleasant UB going on somewhere.
This fixes the motor test :) It turns out that every lead I had
previously was due to the disabling of that feature "breaking" dags
(such that expressions wouldn't be found) and it was the dagged
multi-vector components getting linked by expr->next that made a mess of
things.
Or at least mostly so (there are a few casts). This doesn't fix the
motor bug, but I've wanted to do this for over twenty years and at least
I know what's not causing the bug. However, disabling fold_constants in
expr_algebra.c does "fix" things, so it's still a good place to look.
Finally, that little e. is cleaned up. convert_name was a bit of a pain
(in that it relied on modifying the expression rather than returning a
new one, or more that such behavior was relied on).
I don't know why I didn't think to do it this way before, but simply
recursing into each operand for + or - expressions makes it much easier
to generate correct code. Fixes the motor-point test.
I never liked it, but with C2x coming out, it's best to handle bools
properly. I haven't gone through all the uses of int as bool (I'll leave
that for fixing when I encounter them), but this gets QF working with
both c2x (really, gnu2x because of raw strings).
While the option to make '*' mean dot product for vectors is important,
it breaks vector scaling in ruamoko progs as the resultant vector op
becomes a dot product instead of the indented hadamard product (ie,
component-wise).
The destination operand must be a full four component vector, but the
source can be smaller and small sources do not need to be aligned: the
offset of the source operand and the swizzle indices are adjusted. The
adjustments are done during final statement emission in order to avoid
confusing the data flow analyser (and that's when def offsets are known).
Having three very similar sets of code for outputting values (just for
debug purposes even) got to be a tad annoying. Now there's only one, and
in the right place, too (with the other value code).
Use with quaternions and vectors is a little broken in that
vec4/quaternion and vec3/vector are not the same types (by design) and
thus a cast is needed (not what I want, though). However, creating
vectors (that happen to be int due to int constants) does seem to be
working nicely otherwise.
It seems clang defaults to unsigned for enums. Interestingly, gcc was ok
with the checks being either way. I guess gcc treats enums that *can* be
unsigned as DWIM.
With explicit operators, even. While they're a tad verbose, they're at
least unambiguous and most importantly have the right precedence (or at
least adjustable precedence if I got it wrong, but vector ops having
high precedence than scalar or component seems reasonable to me).
It's possible I lost the child printing when creating the return
expressions, but dot diagrams are much more useful when they don't have
nodes with just pointer values.
The parameter defs are allocated from the parameter space using a
minimum alignment of 4, and varargs functions get a va_list struct in
place of the ...
An "args" expression is unconditionally injected into the call arguments
list at the place where ... is in the list, with arguments passed
through ... coming after the ...
Arguments get through to functions now, but there's problems with taking
the address of local variables: currently done using constant pointer
defs, which can't work for the base register addressing used in Ruamoko
progs.
With the update to test-bi's printf (and a hack to qfcc for lea),
triangle.r actually works, printing the expected results (but -1 instead
of 1 for equality, though that too is actually expected). qfcc will take
a bit longer because it seems there are some design issues in address
expressions (ambiguity, and a few other things) that have pretty much
always been there.
And other related fields so integer is now int (and uinteger is uint). I
really don't know why I went with integer in the first place, but this
will make using macros easier for dealing with types.