The idea is to allow certain contexts to interpret something like `2D`
as an identifier instead of 2.0 (double), or (not sure I'll go there,
5e12 as a bivector instead of a double or float.
This catches qp up with qc and glsl, which means I can modify all three
languages to support inline functions at the same time. There is the
minor(?) problem of attempting to pass parameters to a
function/procedure that takes none producing the wrong error, but that's
documented in the parser.
Because the glsl front-end uses Ruamoko to compile its builtins, it
needs to switch languages, and the cleanest way to do so is to use a
context object that gets passed around. This removes not only the
current_language global, but also (as a bonus) any real references to
flex's scanner object (there's still a pointer in rua_ctx_t, but it's no
longer a parameter (which caused some pain in the change)).
And, nicely, simplify it quite a bit. I'm not sure why I didn't thinkg
of this approach before. While the ruamoko back-end doesn't support
matrices yet, the expressions are handled.
As a side effect, type checking on comparisons is "stricter" in that
more potentially bogus comparisons (eg, int-float) are caught, resulting
in a few warnings in ruamoko code and even finding a couple of bugs.
Since spir-v needs actual bools for its conditional instructions, the
time to do bool properly finally came. As expected, the changes caused
quite a mess, but Ruamoko now does bool/true/false.
I don't know why I thought it was a good idea to make sy_var context
dependent. Renaming sy_var to sy_def makes it a little easier to know to
use the def field, too.
It turned out that for v6 progs (due to lack of double or long) weren't
getting correctly parsed vector literals: incorrect "implicit" flag and
then a lot of brittleness around constant value conversions.
The version directive really does only some error checking, and
only GL_EXT_multiview and GL_GOOGLE_include_directive are supported for
extensions, but enable/disable work (but not yet warn for multiview).
Using set_line_file sort of worked with its stack, but line directives
embedded in the source (which glsl's initialization code uses) messed up
the start path for quoted include searches.
No semantics yet, but qfcc can parse some of QF's shaders. The grammar
mostly follows that in the OpenGL Shading Language, Version 4.60.7 spec,
but with a few less tokens.
I need upstream flex for its line handling and nicer interface, but
debian's flex is ancient and stuck with the legacy interface, and I want
QF to be buildable on at least sid.
The syntax is not at all correct at this stage (really, just a copy of
Ruamoko), but the keyword table exists (in the wrong place) and the
additional basic types (bool, bvecN and (d)matNxM) have been added.
Boolean base type is currently just int, and matrices have 0 width while
I think about what to use, but finally some progress after several
months' hiatus.
There were a few places where some const-casts were needed, but they're
localized to code that's supposed to manipulate types (but I do want to
come up with something to clean that up).
I'm not sure the regressive product is right (overall sign), but that's
actually partly a problem in the math itself (duals and the regressive
product still get poked at, so it may be just a matter of
interpretation).
The expansion is necessary for the final test in preproc-2.r, but breaks
preproc-1.r because the closing ')' is *not* visible to collect_args
(its assumption is incorrect). This needs reworking (and probably
rethinking) of the entire macro argument collection, but I need a little
break from the preprocessor (and it's good enough for *most* uses), so
I'm adding the code (disabled) in order to avoid losing it and my notes
about the problem.
That is, if anything other than '(' (even a macro/argument that expands
to '(')is seen while checking for a function-type macro, the expansion
fails. This gets preproc-1.r working properly.
It really affected only collect_args, but in fixing that I noticed I was
very inconsistent with scanner's type (should be yyscan_t or void *, but
not yyscan_t *).
This gets most of the second preprocessor test working, apparently just
some problems with macro arguments not getting expanded for ## (unless
there's more lurking, of course, which I know there is for __LINE__).
It just feels cleaner than unnecessarily copying token chains. It turns
out that the core problem was just order of operations in next_token:
moving the pending_macro code to after arg/macro detection seems to be
correct (even bare `G LPAREN() 0)` is *not* expanding `G`, as expected).
It turned out I had simply forgotten to ensure the token chains were
properly terminated (the struct copy would copy the next of the source
token and thus macro args always expanded to the last token of the
parent macro). And then I'd missed saving the token text when parsing
predefined macros. __VA_OPT__ is still a problem, but this work was for
making that a little easier.
I got tired of the way the separate token types for macro expansion and
the rest of the preprocessor parser were handled. This makes them a
little more unified. Macro expansion seems to be slightly broken again
in that min/max/bound mess up badly, and __VA_OPT__ does things in the
wrong order, but I wanted to get this in as a checkpoint.
__VA_ARGS__ seems to be working but __VA_OPT__ still needs a lot of work
for dealing with its expansions, but basic error checking and simple
expansions seem to work.
Macros now store their arguments and have a cursor pointing to the next
token to take from their expansion list. While not checked yet, this
will make avoiding recursive macro invocations much easier. More
importantly, it's a step closer to correct argument expansion (though
token pasting is currently broken).
This makes it much easier to keep track of end of file in a conditional
block (#if...#endif) as #include in non-suppressed code would result in
spurious eof errors otherwise. I'm a little concerned about correctness,
but everything seems to work and it should be right as suppressed
include directives do not change the state at all, and the suppressed is
its own flag not in the condition stack.
The op code needs to be set just before being passed to the qc parser so
it doesn't get lost in macro expansion.
And vector values need to not be processed when recording otherwise they
get lost.