This far better reflects the actual meaning. It is very likely that
ty_none is a holdover from long before there was full type encoding and
it meant that the union in qfcc's type_t had no data. This is still
true for basic types, but only if not a function, field or pointer type.
If the type was function, field or pointer, it was not true, so it was
misnamed pretty much from the start.
Either I had gotten confused while writing the code and mixed up line and
offset, or I had changed offset to line at one stage but missed a place.
This fixes the segfault when compiling chewed-alias.r and return-ivar.r
Rather than prefixing free_ to the supplied name, suffix _freelist to the
supplied name. The biggest advantage of this is it allows the free-list to
be a structure member. It also cleans up the name-space a little.
Also move the ALLOC/FREE macros from qfcc.h to QF/alloc.h (needed to for
set.c).
Both modules are more generally useful than just for qfcc (eg, set
builtins for ruamoko).
Simply "backed" and "virutal". Backed spaces have memory allocated to them
while virtual spaces do not. Virtual spaces are intended for local
variables and entity fields.
Because of the way it is used, the data in the type encodings space needs
to always be correct (ie, relocated), even for partially linked object
files.
Rather, only that it is neither external nor local. The idea was to catch
myself swapping the arguments to resolve_external_def, but for some reason
I decided type encoding defs would not be global (save game reasons?).
Fixes the bogus redefined errors when entity fields are used.
Also, rename extern_defs and defined_defs to extern_data_defs and
defined_data_defs (more consistent with the other tables).
The problem was caused by add_relocs and process_loose_relocs adjusting the
reloc offset based on the reloc's space's base address. This is fine for
most relocs, but as relocs for the type space have already been adjusted by
process_type_space, those relocs must be left alone by add_relocs and
process_loose_relocs. As a bonus, the duplicate code has been refactored
into a separate function :)
Now each encoding is copied across def by def using memcpy, with the
expectation that any references to other types will be handled via the
reloc system. Unfortunately, it seems there's an off-by-4 (hmm, suspicious
number...) in the reloc offsets, but I'll look into that after I get some
sleep.
defspace_alloc_loc can cause a realloc which will break the work qfo space
data pointers, so wrap it with alloc_data, which updates the appropriate
pointers and sizes.
The field/data def handling has been moved into process_data_def and
process_field def. The code for handling external defs has been moved into
its own function (extern_def()),
In passing, rename add_space to add_data_space, since it is limited to
handling data spaces.
For now, no other change has been made, but I'll be able to split up
process_def for data def vs field def processing and add a function for
processing type encoding defs.
All internal structs now have "proper" names, and fit the naming convention
(eg, obj_module (like objective-c's types, but obj instead of objc). Some
redundant types got removed (holdovers from before proper struct tag
handling).
Also, it has proven to be unnecessary to build internal classes, so
make_class and make_class_struct are gone, too.
This is similar to the problem with infinite recursion when encoding types.
The problem is with structs with self-referential pointers (eg, struct foo
{struct foo *bar}). The solution is to copy the type data to a buffer and
mark the buffer as transfered before actually processing the type. Further
processing of the type is done via the buffer.