The pic is scaled to fill the specified rect (then clipped to the
screen (effectively)). Done just for the console background for now, but
it will be used for slice-pics as well.
Not implemented for vulkan yet as I'm still thinking about the
descriptor management needed for the instanced rendering.
Making the conback rendering conditional gave an approximately 3% speed
boost to glsl with the GL stub (~12200fps to ~12550fps), for either
conback render method.
The wording might seem a little odd, but cl_screen is really the full 2D
client HUD while the console is completely independent of the client and
shouldn't know that the client even exists. Ideally, the resize events
would be handled by the canvas system, to which end this is a small
step.
Instead of creating new entities for the text views. This approximately
halves the number of entities required to display flowed text, but also
tests the ability to have an entity in multiple hierarchies (the goal of
the ECS component and system changes).
While this does require an extra call after registering components, it
allows for multiple component sets (ie, sub-systems) to be registered
before the component pools are created. The base id for the registered
component set is returned so it can be passed to the subsystem as
needed.
This means that the component id used for hierarchy references must be
passed to Hierarchy_New and Hierarchy_Copy, but does all an entity to
have more than one hierarchy, which is useful for canvases (hierarchies
of views) in the 3d world (the canvas root would have a 3d hierarchy
reference and a 2d (view) hierarchy reference).
Currently only for gl/glsl/vulkan. However, rather than futzing with
con_width and con_height (and trying to guess good values), con_scale
(currently an integer) gives consistent pixel scaling regardless of
window size.
Much of the nq/qw HUD system is quite broken, but the basic status bar
seems to be working nicely. As is the console (both client and server).
Possibly the biggest benefit is separating the rendering of HUD elements
from the updating of them, and much less traversing of invisible views
whose only purpose is to control the positioning of the visible views.
The view flow tests are currently disabled until I adapt the flow code
to ECS.
There seems to be a problem with view resizing in that some gravities
don't follow resizing correctly.
Due to the changes related to console views, the console was either
fully visible or not at all visible, so it took several seconds to
disappear whenever closed.
Taking the screen data from the event fixes the console size being out
due to screen_view updating after the app_window event fires. Really,
this makes it independent of the order.
Due to design issues in the console API that I don't feel like
addressing at this stage, the console view is not a child of the
client's screen view (not even sure it should be in the first place), so
it won't get resized automatically when the client's screen view
resizes. However, ie_app_window is sent when the screen size changes,
and the console has to process input events anyway, so it's quite
reasonable to handle the event.
This breaks console scaling for now (con_width and con_height are gone),
but is a major step towards window resize support as console stuff
should never have been in viddef_t in the first place.
The client screen init code now sets up a screen view (actually the
renderer's scr_view) that is passed to the client console so it can know
the size of the screen. The same view is used by the status bar code.
Also, the ram/cache/paused icon drawing is moved into the client screen
update code. A bit of duplication, but I do plan on merging that
eventually.
Things seem to be at least close to the right place now.
Input line handling has been made more object-oriented in that the
collection of objects required for a single input line (command, say,
say_team) are bundled into one object with just one set of handlers for
resize and draw. Much tidier.
This replaces old_console_t with con_buffer_t for managing scrollback,
and draw_charbuffer_t for actual character drawing, reducing the number
of calls into the renderer. There are numerous issues with placement and
sizing, but the basics are working nicely.
I think I'd gotten distracted while making the changes to the server,
then simply copied the partial changes to the client. It didn't blow up
thanks to the backing store bing char * and the type sized for int, so
safe on any platform, but useless as it wasn't connected properly.
It's actually pretty neat being able to directly, but safely, control a
function pointer via a cvar :)
This is an extremely extensive patch as it hits every cvar, and every
usage of the cvars. Cvars no longer store the value they control,
instead, they use a cexpr value object to reference the value and
specify the value's type (currently, a null type is used for strings).
Non-string cvars are passed through cexpr, allowing expressions in the
cvars' settings. Also, cvars have returned to an enhanced version of the
original (id quake) registration scheme.
As a minor benefit, relevant code having direct access to the
cvar-controlled variables is probably a slight optimization as it
removed a pointer dereference, and the variables can be located for data
locality.
The static cvar descriptors are made private as an additional safety
layer, though there's nothing stopping external modification via
Cvar_FindVar (which is needed for adding listeners).
While not used yet (partly due to working out the design), cvars can
have a validation function.
Registering a cvar allows a primary listener (and its data) to be
specified: it will always be called first when the cvar is modified. The
combination of proper listeners and direct access to the controlled
variable greatly simplifies the more complex cvar interactions as much
less null checking is required, and there's no need for one cvar's
callback to call another's.
nq-x11 is known to work at least well enough for the demos. More testing
will come.
It seems clang defaults to unsigned for enums. Interestingly, gcc was ok
with the checks being either way. I guess gcc treats enums that *can* be
unsigned as DWIM.
Forgetting to unhook the functions (Sys_Printf and the client console's
input event handler) was not a problem for static builds because the
functions were always present, but in builds with dynamic plugins, the
client console's code got ripped away and thus Sys_Printf and the event
hander were being sent into invalid memory. Too much work, not enough
play (with a fully installed client).
I'm not at all happy with con_message and con_menu, but fixing them
properly will take a rework of the menus (planned, though). Also, the
Menu_ console command implementations are a bit iffy and could also do
with a rewrite (probably part of the rest of the menu rework) or just
nuking (they were part of Johnny on Flame's work, so I suspect had
something to do with joystick bindings).
This has smashed the keydest handling for many things, and bindings, but
seems to be a good start with the new input system: the console in
qw-client-x11 is usable (keyboard-only).
The button and axis values have been removed from the knum_t enum as
mouse events are separate from key events, and other button and axis
inputs will be handled separately.
keys.c has been disabled in the build as it is obsolute (thus much of
the breakage).
The recent changes to key handling broke using escape to get out of the
console (escape would toggle between console and menu). Thus take care
of the menu (escape) part of the coupling FIXME by implementing a
callback for the escape key (and removing key_togglemenu) and sorting
out the escape key handling in console. Seems to work nicely
conwidth and conheight have been moved into vid.conview (probably change
the name at some time), and scr_vrect has been replaced by a view as
well. This makes it much easier to create 2d elements that follow the
screen size (taking advantage of a view's gravity) which will, in the
end, make changing the window size easier.
This refactors (as such) keys.c so that it no longer depends on console
or gib, and pulls keys out of video targets. The eventual plan is to
move all high-level general input handling into libQFinput, and probably
low-level (eg, /dev/input handling for joysticks etc on Linux).
Fixes#8
It now takes a context pointer (opaque data) that holds the buffers it
uses for the temporary strings. If the context pointer is null, a static
context is used (making those uses of va NOT thread-safe). Most calls to
va use the static context, but all such calls have been formatted
consistently so they are easy to find when it comes time to do a full
audit.
I added Sys_RegisterShutdown years ago and never really did anything
with it: now any system that needs to be shutdown can ensure it gets
shutdown on program exit, and in the correct order (ie, reverse to init
order).
Once and for all: remove the default and move the Sys_Error outside the
switch (changing appropriate breaks to returns). Now gcc will let me know
when I forget to update the switch statements.