2021-01-01 10:49:20 +00:00
|
|
|
/*
|
|
|
|
simd.c
|
|
|
|
|
|
|
|
SIMD math support
|
|
|
|
|
|
|
|
Copyright (C) 2020 Bill Currie <bill@taniwha.org>
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
|
|
modify it under the terms of the GNU General Public License
|
|
|
|
as published by the Free Software Foundation; either version 2
|
|
|
|
of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
|
|
|
|
|
|
See the GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program; if not, write to:
|
|
|
|
|
|
|
|
Free Software Foundation, Inc.
|
|
|
|
59 Temple Place - Suite 330
|
|
|
|
Boston, MA 02111-1307, USA
|
|
|
|
|
|
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
|
|
# include "config.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
|
|
|
|
#define IMPLEMENT_VEC4F_Funcs
|
|
|
|
#define IMPLEMENT_VEC4D_Funcs
|
2021-03-03 07:17:15 +00:00
|
|
|
#define IMPLEMENT_MAT4F_Funcs
|
2021-01-01 10:49:20 +00:00
|
|
|
|
|
|
|
#include "QF/simd/vec4d.h"
|
|
|
|
#include "QF/simd/vec4f.h"
|
2021-03-03 07:17:15 +00:00
|
|
|
#include "QF/simd/mat4f.h"
|
2021-03-27 14:38:10 +00:00
|
|
|
#include "QF/sys.h"
|
|
|
|
|
|
|
|
vec4f_t
|
|
|
|
BarycentricCoords_vf (const vec4f_t **points, int num_points, const vec4f_t p)
|
|
|
|
{
|
|
|
|
vec4f_t zero = { };
|
|
|
|
vec4f_t a, b, c, x, l, ab, bc, ca, d;
|
|
|
|
if (num_points > 4)
|
|
|
|
Sys_Error ("Don't know how to compute the barycentric coordinates "
|
|
|
|
"for %d points", num_points);
|
|
|
|
switch (num_points) {
|
|
|
|
case 1:
|
|
|
|
l = zero;
|
|
|
|
l[0] = 1;
|
|
|
|
return l;
|
|
|
|
case 2:
|
|
|
|
x = p - *points[0];
|
|
|
|
a = *points[1] - *points[0];
|
|
|
|
d = dotf (x, a) / dotf (a, a);
|
|
|
|
l = zero;
|
|
|
|
l[1] = d[0];
|
|
|
|
l[0] = 1 - d[0];
|
|
|
|
return l;
|
|
|
|
case 3:
|
|
|
|
x = p - *points[0];
|
|
|
|
a = *points[1] - *points[0];
|
|
|
|
b = *points[2] - *points[0];
|
|
|
|
ab = crossf (a, b);
|
|
|
|
d = dotf (ab, ab);
|
|
|
|
l[1] = (dotf (crossf (x, b), ab) / d)[0];
|
|
|
|
l[2] = (dotf (crossf (a, x), ab) / d)[0];
|
|
|
|
l[0] = 1 - l[1] - l[2];
|
|
|
|
return l;
|
|
|
|
case 4:
|
|
|
|
x = p - *points[0];
|
|
|
|
a = *points[1] - *points[0];
|
|
|
|
b = *points[2] - *points[0];
|
|
|
|
c = *points[3] - *points[0];
|
|
|
|
ab = crossf (a, b);
|
|
|
|
bc = crossf (b, c);
|
|
|
|
ca = crossf (c, a);
|
|
|
|
d = dotf (a, bc);
|
|
|
|
l[1] = (dotf (x, bc) / d)[0];
|
|
|
|
l[2] = (dotf (x, ca) / d)[0];
|
|
|
|
l[3] = (dotf (x, ab) / d)[0];
|
|
|
|
l[0] = 1 - l[1] - l[2] - l[3];
|
|
|
|
return l;
|
|
|
|
}
|
|
|
|
Sys_Error ("Not enough points to project or enclose the point");
|
|
|
|
}
|
|
|
|
|
|
|
|
static vec4f_t
|
|
|
|
circum_circle (const vec4f_t points[], int num_points)
|
|
|
|
{
|
|
|
|
vec4f_t a, c, b;
|
|
|
|
vec4f_t bc, ca, ab;
|
|
|
|
vec4f_t aa, bb, cc;
|
|
|
|
vec4f_t div;
|
|
|
|
vec4f_t alpha, beta, gamma;
|
|
|
|
|
|
|
|
switch (num_points) {
|
|
|
|
case 1:
|
|
|
|
return points[0];
|
|
|
|
case 2:
|
|
|
|
return (points[0] + points[1]) / 2;
|
|
|
|
case 3:
|
|
|
|
a = points[0] - points[1];
|
|
|
|
b = points[0] - points[2];
|
|
|
|
c = points[1] - points[2];
|
|
|
|
aa = dotf (a, a);
|
|
|
|
bb = dotf (b, b);
|
|
|
|
cc = dotf (c, c);
|
|
|
|
div = dotf (a, c);
|
|
|
|
div = 2 * (aa * cc - div * div);
|
|
|
|
alpha = cc * dotf (a, b) / div;
|
|
|
|
beta = -bb * dotf (a, c) / div;
|
|
|
|
gamma = aa * dotf (b, c) / div;
|
|
|
|
return alpha * points[0] + beta * points[1] + gamma * points[2];
|
|
|
|
case 4:
|
|
|
|
a = points[1] - points[0];
|
|
|
|
b = points[2] - points[0];
|
|
|
|
c = points[3] - points[0];
|
|
|
|
bc = crossf (b, c);
|
|
|
|
ca = crossf (c, a);
|
|
|
|
ab = crossf (a, b);
|
|
|
|
div = 2 * dotf (a, bc);
|
|
|
|
aa = dotf (a, a) / div;
|
|
|
|
bb = dotf (b, b) / div;
|
|
|
|
cc = dotf (c, c) / div;
|
|
|
|
return bc * aa + bb * ca + cc * ab + points[0];
|
|
|
|
}
|
|
|
|
vec4f_t zero = {};
|
|
|
|
return zero;
|
|
|
|
}
|
|
|
|
|
|
|
|
vspheref_t
|
|
|
|
CircumSphere_vf (const vec4f_t *points, int num_points)
|
|
|
|
{
|
|
|
|
vspheref_t sphere = {};
|
|
|
|
if (num_points > 0 && num_points <= 4) {
|
|
|
|
sphere.center = circum_circle (points, num_points);
|
|
|
|
vec4f_t d = sphere.center - points[0];
|
|
|
|
sphere.radius = sqrt(dotf (d, d)[0]);
|
|
|
|
}
|
|
|
|
return sphere;
|
|
|
|
}
|
|
|
|
|
|
|
|
static vec4f_t
|
|
|
|
closest_affine_point (const vec4f_t **points, int num_points, const vec4f_t x)
|
|
|
|
{
|
|
|
|
vec4f_t closest = {};
|
|
|
|
vec4f_t a, b, n, d;
|
|
|
|
vec4f_t l;
|
|
|
|
|
|
|
|
switch (num_points) {
|
|
|
|
default:
|
|
|
|
case 1:
|
|
|
|
closest = *points[0];
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
n = *points[1] - *points[0];
|
|
|
|
d = x - *points[0];
|
|
|
|
l = dotf (d, n) / dotf (n, n);
|
|
|
|
closest = *points[0] + l * n;
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
a = *points[1] - *points[0];
|
|
|
|
b = *points[2] - *points[0];
|
|
|
|
n = crossf (a, b);
|
|
|
|
d = *points[0] - x;
|
|
|
|
l = dotf (d, n) / dotf (n, n);
|
|
|
|
closest = x + l * n;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return closest;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
test_support_points(const vec4f_t **points, int *num_points, vec4f_t center)
|
|
|
|
{
|
|
|
|
vec4i_t cmp;
|
|
|
|
int in_affine = 0;
|
|
|
|
int in_convex = 0;
|
|
|
|
vec4f_t v, d, n, a, b;
|
|
|
|
float nn, dd, vv, dn;
|
|
|
|
|
|
|
|
switch (*num_points) {
|
|
|
|
case 1:
|
|
|
|
cmp = *points[0] == center;
|
|
|
|
in_affine = cmp[0] && cmp[1] && cmp[2];
|
|
|
|
// the convex hull and affine hull for a single point are the same
|
|
|
|
in_convex = in_affine;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
v = *points[1] - *points[0];
|
|
|
|
d = center - *points[0];
|
|
|
|
n = crossf (v, d);
|
|
|
|
nn = dotf (n, n)[0];
|
|
|
|
dd = dotf (d, d)[0];
|
|
|
|
vv = dotf (v, v)[0];
|
|
|
|
in_affine = nn < 1e-6 * vv * dd;
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
a = *points[1] - *points[0];
|
|
|
|
b = *points[2] - *points[0];
|
|
|
|
d = center - *points[0];
|
|
|
|
n = crossf (a, b);
|
|
|
|
dn = dotf (d, n)[0];
|
|
|
|
dd = dotf (d, d)[0];
|
|
|
|
nn = dotf (n, n)[0];
|
|
|
|
in_affine = dn * dn < 1e-6 * dd * nn;
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
in_affine = 1;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
Sys_Error ("Invalid number of points (%d) in test_support_points",
|
|
|
|
*num_points);
|
|
|
|
}
|
|
|
|
|
|
|
|
// if in_convex is not true while in_affine is, then need to test as
|
|
|
|
// there is more than one dimension for the affine hull (a single support
|
|
|
|
// point is never dropped as it cannot be redundant)
|
|
|
|
if (in_affine && !in_convex) {
|
|
|
|
vec4f_t lambda;
|
|
|
|
int dropped = 0;
|
|
|
|
int count = *num_points;
|
|
|
|
|
|
|
|
lambda = BarycentricCoords_vf (points, count, center);
|
|
|
|
|
|
|
|
for (int i = 0; i < count; i++) {
|
|
|
|
points[i - dropped] = points[i];
|
|
|
|
if (lambda[i] < -1e-4) {
|
|
|
|
dropped++;
|
|
|
|
(*num_points)--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
in_convex = !dropped;
|
|
|
|
if (dropped) {
|
|
|
|
for (int i = count - dropped; i < count; i++) {
|
|
|
|
points[i] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return in_convex;
|
|
|
|
}
|
|
|
|
|
|
|
|
vspheref_t
|
|
|
|
SmallestEnclosingBall_vf (const vec4f_t *points, int num_points)
|
|
|
|
{
|
|
|
|
vspheref_t sphere = {};
|
|
|
|
vec4f_t center = {};
|
|
|
|
const vec4f_t *best;
|
|
|
|
const vec4f_t *support[4];
|
|
|
|
int num_support;
|
|
|
|
int i;
|
|
|
|
int iters = 0;
|
|
|
|
|
|
|
|
if (num_points < 1) {
|
|
|
|
return sphere;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
support[i] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
vec4f_t dist = {};
|
|
|
|
float best_dist = 0;
|
|
|
|
center = points[0];
|
|
|
|
best = &points[0];
|
|
|
|
for (i = 1; i < num_points; i++) {
|
|
|
|
dist = points[i] - center;
|
|
|
|
dist = dotf (dist, dist);
|
|
|
|
if (dist[0] > best_dist) {
|
|
|
|
best_dist = dist[0];
|
|
|
|
best = &points[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
num_support = 1;
|
|
|
|
support[0] = best;
|
|
|
|
sphere.radius = best_dist; // note: radius squared until the end
|
|
|
|
|
|
|
|
while (!test_support_points (support, &num_support, center)) {
|
|
|
|
vec4f_t affine;
|
|
|
|
vec4f_t center_to_affine, center_to_point;
|
|
|
|
float affine_dist, point_proj, point_dist, bound;
|
|
|
|
float scale = 1;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (iters++ > 10)
|
|
|
|
Sys_Error ("stuck SEB");
|
|
|
|
best = 0;
|
|
|
|
|
|
|
|
affine = closest_affine_point (support, num_support, center);
|
|
|
|
center_to_affine = affine - center;
|
|
|
|
affine_dist = dotf (center_to_affine, center_to_affine)[0];
|
|
|
|
for (i = 0; i < num_points; i++) {
|
|
|
|
if (&points[i] == support[0] || &points[i] == support[1]
|
|
|
|
|| &points[i] == support[2])
|
|
|
|
continue;
|
|
|
|
center_to_point = points[i] - center;
|
|
|
|
point_proj = dotf (center_to_affine, center_to_point)[0];
|
|
|
|
if (affine_dist - point_proj <= 0
|
|
|
|
|| ((affine_dist - point_proj) * (affine_dist - point_proj)
|
|
|
|
< 1e-6 * sphere.radius * affine_dist))
|
|
|
|
continue;
|
|
|
|
point_dist = dotf (center_to_point, center_to_point)[0];
|
|
|
|
bound = sphere.radius - point_dist;
|
|
|
|
bound /= 2 * (affine_dist - point_proj);
|
|
|
|
if (bound < scale) {
|
|
|
|
best = &points[i];
|
|
|
|
scale = bound;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
center = center + scale * center_to_affine;
|
|
|
|
dist = center - *support[0];
|
|
|
|
sphere.radius = dotf (dist, dist)[0];
|
|
|
|
if (best) {
|
|
|
|
support[num_support++] = best;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
best_dist = 0;
|
|
|
|
for (i = 0; i < num_points; i++) {
|
|
|
|
dist = center - points[i];
|
|
|
|
dist = dotf (dist, dist);
|
|
|
|
if (dist[0] > best_dist)
|
|
|
|
best_dist = dist[0];
|
|
|
|
}
|
|
|
|
sphere.center = center;
|
|
|
|
sphere.radius = sqrt (best_dist);
|
|
|
|
return sphere;
|
|
|
|
}
|