mirror of
https://git.code.sf.net/p/quake/quakeforge
synced 2024-11-23 12:52:46 +00:00
215 lines
5.6 KiB
C
215 lines
5.6 KiB
C
|
/*
|
||
|
mathlib.h
|
||
|
|
||
|
Vector math library
|
||
|
|
||
|
Copyright (C) 1996-1997 Id Software, Inc.
|
||
|
|
||
|
This program is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU General Public License
|
||
|
as published by the Free Software Foundation; either version 2
|
||
|
of the License, or (at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
|
||
|
See the GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program; if not, write to:
|
||
|
|
||
|
Free Software Foundation, Inc.
|
||
|
59 Temple Place - Suite 330
|
||
|
Boston, MA 02111-1307, USA
|
||
|
|
||
|
*/
|
||
|
|
||
|
#ifndef __QF_math_vector_h
|
||
|
#define __QF_math_vector_h
|
||
|
|
||
|
/** \defgroup mathlib_vector Vector functions
|
||
|
\ingroup mathlib
|
||
|
*/
|
||
|
//@{
|
||
|
|
||
|
#include "QF/qtypes.h"
|
||
|
|
||
|
extern const vec_t *const vec3_origin;
|
||
|
|
||
|
#define DotProduct(a,b) ((a)[0] * (b)[0] + (a)[1] * (b)[1] + (a)[2] * (b)[2])
|
||
|
#define VectorSubtract(a,b,c) \
|
||
|
do { \
|
||
|
(c)[0] = (a)[0] - (b)[0]; \
|
||
|
(c)[1] = (a)[1] - (b)[1]; \
|
||
|
(c)[2] = (a)[2] - (b)[2]; \
|
||
|
} while (0)
|
||
|
#define VectorNegate(a,b) \
|
||
|
do { \
|
||
|
(b)[0] = -(a)[0]; \
|
||
|
(b)[1] = -(a)[1]; \
|
||
|
(b)[2] = -(a)[2]; \
|
||
|
} while (0)
|
||
|
#define VectorAdd(a,b,c) \
|
||
|
do { \
|
||
|
(c)[0] = (a)[0] + (b)[0]; \
|
||
|
(c)[1] = (a)[1] + (b)[1]; \
|
||
|
(c)[2] = (a)[2] + (b)[2]; \
|
||
|
} while (0)
|
||
|
#define VectorCopy(a,b) \
|
||
|
do { \
|
||
|
(b)[0] = (a)[0]; \
|
||
|
(b)[1] = (a)[1]; \
|
||
|
(b)[2] = (a)[2]; \
|
||
|
} while (0)
|
||
|
#define VectorMultAdd(a,s,b,c) \
|
||
|
do { \
|
||
|
(c)[0] = (a)[0] + (s) * (b)[0]; \
|
||
|
(c)[1] = (a)[1] + (s) * (b)[1]; \
|
||
|
(c)[2] = (a)[2] + (s) * (b)[2]; \
|
||
|
} while (0)
|
||
|
#define VectorMultSub(a,s,b,c) \
|
||
|
do { \
|
||
|
(c)[0] = (a)[0] - (s) * (b)[0]; \
|
||
|
(c)[1] = (a)[1] - (s) * (b)[1]; \
|
||
|
(c)[2] = (a)[2] - (s) * (b)[2]; \
|
||
|
} while (0)
|
||
|
#define VectorLength(a) sqrt(DotProduct(a, a))
|
||
|
|
||
|
#define VectorScale(a,b,c) \
|
||
|
do { \
|
||
|
(c)[0] = (a)[0] * (b); \
|
||
|
(c)[1] = (a)[1] * (b); \
|
||
|
(c)[2] = (a)[2] * (b); \
|
||
|
} while (0)
|
||
|
/** Shear vector \a b by vector \a a.
|
||
|
|
||
|
Vector a represents the shear factors XY, XZ, YZ, ie in matrix form:
|
||
|
[ 1 0 0 ] [ b0 ]
|
||
|
[ a0 1 0 ] [ b1 ]
|
||
|
[ a1 a2 1 ] [ b2 ]
|
||
|
|
||
|
The reason for this particular scheme is that is how Mat4Decompose
|
||
|
calculates the shear from a matrix.
|
||
|
|
||
|
\note The order of calculations is important for when b and c refer to
|
||
|
the same vector.
|
||
|
*/
|
||
|
#define VectorShear(a,b,c) \
|
||
|
do { \
|
||
|
(c)[2] = (b)[0] * (a)[1] + (b)[1] * (a)[2] + (b)[2]; \
|
||
|
(c)[1] = (b)[0] * (a)[0] + (b)[1]; \
|
||
|
(c)[0] = (b)[0]; \
|
||
|
} while (0)
|
||
|
#define VectorUnshear(a,b,c) \
|
||
|
do { \
|
||
|
(c)[2] = (b)[2] - (b)[1] * (a)[2] - (b)[0] * ((a)[1]-(a)[0]*(a)[2]); \
|
||
|
(c)[1] = (b)[1] - (b)[0] * (a)[0]; \
|
||
|
(c)[0] = (b)[0]; \
|
||
|
} while (0)
|
||
|
#define VectorCompMult(a,b,c) \
|
||
|
do { \
|
||
|
(c)[0] = (a)[0] * (b)[0]; \
|
||
|
(c)[1] = (a)[1] * (b)[1]; \
|
||
|
(c)[2] = (a)[2] * (b)[2]; \
|
||
|
} while (0)
|
||
|
#define VectorCompDiv(a,b,c) \
|
||
|
do { \
|
||
|
(c)[0] = (a)[0] / (b)[0]; \
|
||
|
(c)[1] = (a)[1] / (b)[1]; \
|
||
|
(c)[2] = (a)[2] / (b)[2]; \
|
||
|
} while (0)
|
||
|
#define VectorCompCompare(x, op, y) \
|
||
|
(((x)[0] op (y)[0]) && ((x)[1] op (y)[1]) && ((x)[2] op (y)[2]))
|
||
|
#define VectorCompare(x, y) VectorCompCompare (x, ==, y)
|
||
|
#define VectorCompMin(a, b, c) \
|
||
|
do { \
|
||
|
(c)[0] = min ((a)[0], (b)[0]); \
|
||
|
(c)[1] = min ((a)[1], (b)[1]); \
|
||
|
(c)[2] = min ((a)[2], (b)[2]); \
|
||
|
} while (0)
|
||
|
#define VectorCompMax(a, b, c) \
|
||
|
do { \
|
||
|
(c)[0] = max ((a)[0], (b)[0]); \
|
||
|
(c)[1] = max ((a)[1], (b)[1]); \
|
||
|
(c)[2] = max ((a)[2], (b)[2]); \
|
||
|
} while (0)
|
||
|
#define VectorCompBound(a, b, c, d) \
|
||
|
do { \
|
||
|
(d)[0] = bound ((a)[0], (b)[0], (c)[0]); \
|
||
|
(d)[1] = bound ((a)[1], (b)[1], (c)[1]); \
|
||
|
(d)[2] = bound ((a)[2], (b)[2], (c)[2]); \
|
||
|
} while (0)
|
||
|
|
||
|
#define VectorIsZero(a) (!(a)[0] && !(a)[1] && !(a)[2])
|
||
|
#define VectorZero(a) ((a)[2] = (a)[1] = (a)[0] = 0);
|
||
|
#define VectorSet(a,b,c,d) \
|
||
|
do { \
|
||
|
(d)[0] = a; \
|
||
|
(d)[1] = b; \
|
||
|
(d)[2] = c; \
|
||
|
} while (0)
|
||
|
|
||
|
#define VectorBlend(v1,v2,b,v) \
|
||
|
do { \
|
||
|
(v)[0] = (v1)[0] * (1 - (b)) + (v2)[0] * (b); \
|
||
|
(v)[1] = (v1)[1] * (1 - (b)) + (v2)[1] * (b); \
|
||
|
(v)[2] = (v1)[2] * (1 - (b)) + (v2)[2] * (b); \
|
||
|
} while (0)
|
||
|
|
||
|
//For printf etc
|
||
|
#define VectorExpand(v) (v)[0], (v)[1], (v)[2]
|
||
|
|
||
|
/*
|
||
|
* VectorDistance, the distance between two points.
|
||
|
* Yes, this is the same as sqrt(VectorSubtract then DotProduct),
|
||
|
* however that way would involve more vars, this is cheaper.
|
||
|
*/
|
||
|
#define VectorDistance_fast(a, b) \
|
||
|
((((a)[0] - (b)[0]) * ((a)[0] - (b)[0])) + \
|
||
|
(((a)[1] - (b)[1]) * ((a)[1] - (b)[1])) + \
|
||
|
(((a)[2] - (b)[2]) * ((a)[2] - (b)[2])))
|
||
|
#define VectorDistance(a, b) sqrt(VectorDistance_fast(a, b))
|
||
|
|
||
|
vec_t _DotProduct (const vec3_t v1, const vec3_t v2);
|
||
|
void _VectorAdd (const vec3_t veca, const vec3_t vecb, vec3_t out);
|
||
|
void _VectorCopy (const vec3_t in, vec3_t out);
|
||
|
int _VectorCompare (const vec3_t v1, const vec3_t v2); // uses EQUAL_EPSILON
|
||
|
vec_t _VectorLength (const vec3_t v);
|
||
|
void _VectorMA (const vec3_t veca, float scale, const vec3_t vecb,
|
||
|
vec3_t vecc);
|
||
|
void _VectorScale (const vec3_t in, vec_t scale, vec3_t out);
|
||
|
void _VectorSubtract (const vec3_t veca, const vec3_t vecb, vec3_t out);
|
||
|
void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross);
|
||
|
vec_t _VectorNormalize (vec3_t v); // returns vector length
|
||
|
|
||
|
extern inline float VectorNormalize (vec3_t v); // returns vector length
|
||
|
|
||
|
#ifndef IMPLEMENT_VectorNormalize
|
||
|
extern inline
|
||
|
#else
|
||
|
VISIBLE
|
||
|
#endif
|
||
|
float
|
||
|
VectorNormalize (vec3_t v)
|
||
|
{
|
||
|
float length;
|
||
|
|
||
|
length = DotProduct (v, v);
|
||
|
if (length) {
|
||
|
float ilength;
|
||
|
|
||
|
length = sqrt (length);
|
||
|
ilength = 1.0 / length;
|
||
|
v[0] *= ilength;
|
||
|
v[1] *= ilength;
|
||
|
v[2] *= ilength;
|
||
|
}
|
||
|
|
||
|
return length;
|
||
|
}
|
||
|
|
||
|
//@}
|
||
|
|
||
|
#endif // __QF_math_vector_h
|