quakeforge/qw/source/gl_warp.c

233 lines
4.8 KiB
C
Raw Normal View History

/*
gl_warp.c
water polygons
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
$Id$
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "QF/cvar.h"
#include "glquake.h"
#include "QF/sys.h"
extern double realtime;
extern model_t *loadmodel;
extern qboolean lighthalf;
msurface_t *warpface;
extern cvar_t *gl_subdivide_size;
void
BoundPoly (int numverts, float *verts, vec3_t mins, vec3_t maxs)
{
int i, j;
float *v;
mins[0] = mins[1] = mins[2] = 9999;
maxs[0] = maxs[1] = maxs[2] = -9999;
v = verts;
for (i = 0; i < numverts; i++)
for (j = 0; j < 3; j++, v++) {
if (*v < mins[j])
mins[j] = *v;
if (*v > maxs[j])
maxs[j] = *v;
}
}
void
SubdividePolygon (int numverts, float *verts)
{
int i, j, k;
vec3_t mins, maxs;
float m;
float *v;
vec3_t front[64], back[64];
int f, b;
float dist[64];
float frac;
glpoly_t *poly;
float s, t;
if (numverts > 60)
Sys_Error ("numverts = %i", numverts);
BoundPoly (numverts, verts, mins, maxs);
for (i = 0; i < 3; i++) {
m = (mins[i] + maxs[i]) * 0.5;
m =
gl_subdivide_size->value * floor (m / gl_subdivide_size->value +
0.5);
if (maxs[i] - m < 8)
continue;
if (m - mins[i] < 8)
continue;
// cut it
v = verts + i;
for (j = 0; j < numverts; j++, v += 3)
dist[j] = *v - m;
// wrap cases
dist[j] = dist[0];
v -= i;
VectorCopy (verts, v);
f = b = 0;
v = verts;
for (j = 0; j < numverts; j++, v += 3) {
if (dist[j] >= 0) {
VectorCopy (v, front[f]);
f++;
}
if (dist[j] <= 0) {
VectorCopy (v, back[b]);
b++;
}
if (dist[j] == 0 || dist[j + 1] == 0)
continue;
if ((dist[j] > 0) != (dist[j + 1] > 0)) {
// clip point
frac = dist[j] / (dist[j] - dist[j + 1]);
for (k = 0; k < 3; k++)
front[f][k] = back[b][k] = v[k] + frac * (v[3 + k] - v[k]);
f++;
b++;
}
}
SubdividePolygon (f, front[0]);
SubdividePolygon (b, back[0]);
return;
}
poly =
Hunk_Alloc (sizeof (glpoly_t) +
(numverts - 4) * VERTEXSIZE * sizeof (float));
poly->next = warpface->polys;
warpface->polys = poly;
poly->numverts = numverts;
for (i = 0; i < numverts; i++, verts += 3) {
VectorCopy (verts, poly->verts[i]);
s = DotProduct (verts, warpface->texinfo->vecs[0]);
t = DotProduct (verts, warpface->texinfo->vecs[1]);
poly->verts[i][3] = s;
poly->verts[i][4] = t;
}
}
/*
GL_SubdivideSurface
Breaks a polygon up along axial 64 unit
boundaries so that turbulent and sky warps
can be done reasonably.
*/
void
GL_SubdivideSurface (msurface_t *fa)
{
vec3_t verts[64];
int numverts;
int i;
int lindex;
float *vec;
warpface = fa;
//
// convert edges back to a normal polygon
//
numverts = 0;
for (i = 0; i < fa->numedges; i++) {
lindex = loadmodel->surfedges[fa->firstedge + i];
if (lindex > 0)
vec = loadmodel->vertexes[loadmodel->edges[lindex].v[0]].position;
else
vec = loadmodel->vertexes[loadmodel->edges[-lindex].v[1]].position;
VectorCopy (vec, verts[numverts]);
numverts++;
}
SubdividePolygon (numverts, verts[0]);
}
//=========================================================
// speed up sin calculations - Ed
float turbsin[] = {
# include "gl_warp_sin.h"
};
#define TURBSCALE (256.0 / (2 * M_PI))
/*
EmitWaterPolys
Does a water warp on the pre-fragmented glpoly_t chain
*/
void
EmitWaterPolys (msurface_t *fa)
{
glpoly_t *p;
float *v;
int i;
float s, t, os, ot;
vec3_t nv;
for (p = fa->polys; p; p = p->next) {
glBegin (GL_POLYGON);
for (i = 0, v = p->verts[0]; i < p->numverts; i++, v += VERTEXSIZE) {
os = v[3];
ot = v[4];
s = os + turbsin[(int) ((ot * 0.125 + realtime) * TURBSCALE) & 255];
s *= (1.0 / 64);
t = ot + turbsin[(int) ((os * 0.125 + realtime) * TURBSCALE) & 255];
t *= (1.0 / 64);
glTexCoord2f (s, t);
VectorCopy (v, nv);
nv[2] += r_waterripple->value
* turbsin[(int) ((v[3] * 0.125 + realtime) * TURBSCALE) & 255]
* turbsin[(int) ((v[4] * 0.125 + realtime) * TURBSCALE) & 255]
* (1.0 / 64.0);
glVertex3fv (nv);
}
glEnd ();
}
}