quakeforge/tools/qfcc/source/function.c

1278 lines
31 KiB
C
Raw Normal View History

/*
function.c
QC function support code
Copyright (C) 2002 Bill Currie
Author: Bill Currie <bill@taniwha.org>
Date: 2002/5/7
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
*/
2002-06-01 04:41:25 +00:00
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
2002-06-01 04:41:25 +00:00
#ifdef HAVE_STRING_H
# include <string.h>
#endif
#ifdef HAVE_STRINGS_H
# include <strings.h>
#endif
#include <stdlib.h>
#include "QF/alloc.h"
2002-05-08 21:24:24 +00:00
#include "QF/dstring.h"
#include "QF/hash.h"
#include "QF/va.h"
2002-05-08 21:24:24 +00:00
#include "tools/qfcc/include/qfcc.h"
#include "tools/qfcc/include/attribute.h"
#include "tools/qfcc/include/class.h"
#include "tools/qfcc/include/codespace.h"
#include "tools/qfcc/include/debug.h"
#include "tools/qfcc/include/def.h"
#include "tools/qfcc/include/defspace.h"
#include "tools/qfcc/include/diagnostic.h"
#include "tools/qfcc/include/evaluate_type.h"
#include "tools/qfcc/include/emit.h"
#include "tools/qfcc/include/expr.h"
#include "tools/qfcc/include/flow.h"
#include "tools/qfcc/include/function.h"
#include "tools/qfcc/include/opcodes.h"
#include "tools/qfcc/include/options.h"
#include "tools/qfcc/include/reloc.h"
#include "tools/qfcc/include/shared.h"
#include "tools/qfcc/include/statements.h"
#include "tools/qfcc/include/strpool.h"
#include "tools/qfcc/include/symtab.h"
#include "tools/qfcc/include/target.h"
#include "tools/qfcc/include/type.h"
#include "tools/qfcc/include/value.h"
ALLOC_STATE (param_t, params);
ALLOC_STATE (function_t, functions);
ALLOC_STATE (metafunc_t, metafuncs);
ALLOC_STATE (genfunc_t, genfuncs);
static hashtab_t *generic_functions;
static hashtab_t *metafuncs;
static hashtab_t *function_map;
static const char *
gen_func_get_key (const void *_f, void *unused)
{
auto f = (genfunc_t *) _f;
return f->name;
}
static const char *
metafunc_get_full_name (const void *_f, void *unused)
{
metafunc_t *f = (metafunc_t *) _f;
return f->full_name;
}
static const char *
metafunc_get_name (const void *_f, void *unused)
{
metafunc_t *f = (metafunc_t *) _f;
return f->name;
}
static void
check_generic_param (genparam_t *param, genfunc_t *genfunc)
{
if (param->fixed_type) {
if (param->gentype != -1) {
internal_error (0, "invalid type index %d on %s for %s",
param->gentype, param->name, genfunc->name);
}
if (param->compute) {
internal_error (0, "fixed and computed types on %s for %s",
param->name, genfunc->name);
}
} else if (param->compute) {
if (param->gentype != -1) {
internal_error (0, "invalid type index %d on %s for %s",
param->gentype, param->name, genfunc->name);
}
} else if (param->gentype < 0 || param->gentype >= genfunc->num_types) {
internal_error (0, "invalid type index %d on %s for %s",
param->gentype, param->name, genfunc->name);
}
}
static bool __attribute__((pure))
cmp_genparams (genfunc_t *g1, genparam_t *p1, genfunc_t *g2, genparam_t *p2)
{
if (p1->fixed_type || p2->fixed_type) {
return p1->fixed_type == p2->fixed_type;
}
// fixed_type for both p1 and p2 is null
auto t1 = g1->types[p1->gentype];
auto t2 = g2->types[p2->gentype];
auto vt1 = t1.valid_types;
auto vt2 = t2.valid_types;
for (; *vt1 && *vt2 && *vt1 == *vt2; vt1++, vt2++) continue;
return *vt1 == *vt2;
}
void
add_generic_function (genfunc_t *genfunc)
{
auto name = genfunc->name;
for (int i = 0; i < genfunc->num_types; i++) {
auto gentype = &genfunc->types[i];
if (!gentype->valid_types) {
internal_error (0, "no valid_types set in generic type");
}
for (auto type = gentype->valid_types; type && *type; type++) {
if (is_void (*type)) {
internal_error (0, "void in list of valid types");
}
}
}
int gen_params = 0;
for (int i = 0; i < genfunc->num_params; i++) {
auto param = &genfunc->params[i];
if (!param->fixed_type) {
gen_params++;
check_generic_param (param, genfunc);
}
}
if (!gen_params) {
internal_error (0, "%s has no generic parameters", name);
}
if (!genfunc->ret_type) {
internal_error (0, "%s has no return type", name);
}
check_generic_param (genfunc->ret_type, genfunc);
bool is_new = true;
auto old_list = (genfunc_t **) Hash_FindList (generic_functions, name);
for (auto o = old_list; is_new && o && *o; o++) {
auto old = *o;
if (old->num_params == genfunc->num_params) {
is_new = false;
for (int i = 0; i < genfunc->num_params; i++) {
if (!cmp_genparams (genfunc, &genfunc->params[i],
old, &old->params[i])) {
is_new = true;
break;
}
}
if (!is_new && !cmp_genparams (genfunc, genfunc->ret_type,
old, old->ret_type)) {
error (0, "can't overload on return types");
return;
}
}
}
if (is_new) {
Hash_Add (generic_functions, genfunc);
} else {
for (int i = 0; i < genfunc->num_types; i++) {
auto gentype = &genfunc->types[i];
free (gentype->valid_types);
}
free (genfunc->types);
FREE (genfuncs, genfunc);
}
}
static const type_t **
valid_type_list (const expr_t *expr)
{
if (expr->type != ex_list) {
return expand_type (expr);
}
int count = list_count (&expr->list);
const expr_t *type_refs[count];
list_scatter (&expr->list, type_refs);
const type_t **types = malloc (sizeof (type_t *[count + 1]));
types[count] = nullptr;
bool err = false;
for (int i = 0; i < count; i++) {
if (!(types[i] = resolve_type (type_refs[i]))) {
error (type_refs[i], "not a constant type ref");
err = true;
}
}
if (err) {
free (types);
return nullptr;
}
return types;
}
static gentype_t
make_gentype (const expr_t *expr)
{
if (expr->type != ex_symbol || expr->symbol->sy_type != sy_type_param) {
internal_error (expr, "expected generic type name");
}
auto sym = expr->symbol;
gentype_t gentype = {
.name = save_string (sym->name),
.valid_types = valid_type_list (sym->expr),
};
if (!gentype.valid_types) {
internal_error (expr, "empty generic type");
}
return gentype;
}
static int
find_gentype (const expr_t *expr, genfunc_t *genfunc)
{
if (!expr || expr->type != ex_symbol) {
return -1;
}
const char *name = expr->symbol->name;
for (int i = 0; i < genfunc->num_types; i++) {
auto t = &genfunc->types[i];
if (strcmp (name, t->name) == 0) {
return i;
}
}
return -1;
}
static genparam_t
make_genparam (param_t *param, genfunc_t *genfunc)
{
int gentype = find_gentype (param->type_expr, genfunc);
typeeval_t *compute = nullptr;
if (gentype < 0 && param->type_expr) {
compute = build_type_function (param->type_expr,
genfunc->num_types, genfunc->types);
}
genparam_t genparam = {
.name = save_string (param->name),
.fixed_type = param->type,
.compute = compute,
.gentype = gentype,
.qual = param->qual,
};
return genparam;
}
static genfunc_t *
parse_generic_function (const char *name, specifier_t spec)
{
if (!spec.is_generic) {
return nullptr;
}
// fake parameter for the return type
param_t ret_param = {
.next = spec.sym->params,
.type = spec.type,
.type_expr = spec.type_expr,
};
int num_params = 0;
int num_gentype = 0;
for (auto p = &ret_param; p; p = p->next) {
num_params++;
}
auto generic_tab = spec.symtab;
for (auto s = generic_tab->symbols; s; s = s->next) {
bool found = false;
for (auto q = &ret_param; q; q = q->next) {
// skip complex expressions because they will be either fixed
// or rely on earlier parameters
if (!q->type_expr || q->type_expr->type != ex_symbol) {
continue;
}
if (strcmp (q->type_expr->symbol->name, s->name) == 0) {
num_gentype++;
found = true;
break;
}
}
if (!spec.is_generic_block && !found) {
warning (0, "generic parameter %s not used", s->name);
}
}
if (!num_gentype) {
if (!spec.is_generic_block) {
warning (0, "no generic parameters for %s", name);
}
return nullptr;
}
genfunc_t *genfunc;
ALLOC (4096, genfunc_t, genfuncs, genfunc);
*genfunc = (genfunc_t) {
.name = save_string (name),
.types = malloc (sizeof (gentype_t[num_gentype])
+ sizeof (genparam_t[num_params])),
.num_types = num_gentype,
.num_params = num_params - 1, // don't count return type
};
genfunc->params = (genparam_t *) &genfunc->types[num_gentype];
genfunc->ret_type = &genfunc->params[num_params - 1];
num_gentype = 0;
for (auto s = generic_tab->symbols; s; s = s->next) {
for (auto q = &ret_param; q; q = q->next) {
// see complex expressions comment above
if (!q->type_expr || q->type_expr->type != ex_symbol) {
continue;
}
if (strcmp (q->type_expr->symbol->name, s->name) == 0) {
genfunc->types[num_gentype++] = make_gentype (q->type_expr);
break;
}
}
}
num_params = 0;
// skip return type so it can be done last to support complex expressions
for (auto p = ret_param.next; p; p = p->next) {
genfunc->params[num_params++] = make_genparam (p, genfunc);
}
*genfunc->ret_type = make_genparam (&ret_param, genfunc);
return genfunc;
}
param_t *
new_param (const char *selector, const type_t *type, const char *name)
{
param_t *param;
ALLOC (4096, param_t, params, param);
*param = (param_t) {
.selector = selector,
.type = find_type (type),
.name = name,
.qual = pq_in,
};
return param;
}
param_t *
new_generic_param (const expr_t *type_expr, const char *name)
{
param_t *param;
ALLOC (4096, param_t, params, param);
*param = (param_t) {
.type_expr = type_expr,
.name = name,
.qual = pq_in,
};
return param;
}
param_t *
param_append_identifiers (param_t *params, symbol_t *idents, const type_t *type)
{
param_t **p = &params;
while (*p)
p = &(*p)->next;
if (!idents) {
*p = new_param (0, 0, 0);
p = &(*p)->next;
}
while (idents) {
idents->type = type;
*p = new_param (0, type, idents->name);
p = &(*p)->next;
idents = idents->next;
}
return params;
}
static param_t *
_reverse_params (param_t *params, param_t *next)
{
param_t *p = params;
if (params->next)
p = _reverse_params (params->next, params);
params->next = next;
return p;
}
param_t *
reverse_params (param_t *params)
{
if (!params)
return 0;
return _reverse_params (params, 0);
}
param_t *
append_params (param_t *params, param_t *more_params)
{
if (params) {
param_t *p;
for (p = params; p->next; ) {
p = p->next;
}
p->next = more_params;
return params;
}
return more_params;
}
param_t *
copy_params (param_t *params)
{
param_t *n_parms = 0, **p = &n_parms;
while (params) {
*p = new_param (params->selector, params->type, params->name);
params = params->next;
p = &(*p)->next;
}
return n_parms;
}
const type_t *
parse_params (const type_t *return_type, param_t *parms)
{
param_t *p;
type_t *new;
int count = 0;
if (return_type && is_class (return_type)) {
error (0, "cannot return an object (forgot *?)");
return_type = &type_id;
}
new = new_type ();
new->type = ev_func;
2020-02-14 17:21:21 +00:00
new->alignment = 1;
new->width = 1;
new->columns = 1;
new->func.ret_type = return_type;
new->func.num_params = 0;
2002-05-09 20:12:28 +00:00
for (p = parms; p; p = p->next) {
if (p->type) {
count++;
}
}
if (count) {
new->func.param_types = malloc (count * sizeof (type_t *));
new->func.param_quals = malloc (count * sizeof (param_qual_t));
}
for (p = parms; p; p = p->next) {
if (!p->selector && !p->type && !p->name) {
if (p->next)
internal_error (0, 0);
new->func.num_params = -(new->func.num_params + 1);
2002-05-09 20:12:28 +00:00
} else if (p->type) {
if (is_class (p->type)) {
error (0, "cannot use an object as a parameter (forgot *?)");
p->type = &type_id;
}
auto ptype = unalias_type (p->type);
new->func.param_types[new->func.num_params] = ptype;
new->func.param_quals[new->func.num_params] = p->qual;
new->func.num_params++;
}
}
return new;
}
param_t *
check_params (param_t *params)
{
int num = 1;
param_t *p = params;
if (!params)
return 0;
while (p) {
if (p->type && is_void(p->type)) {
if (p->name) {
error (0, "parameter %d ('%s') has incomplete type", num,
p->name);
p->type = type_default;
} else if (num > 1 || p->next) {
error (0, "'void' must be the only parameter");
p->name = "void";
} else {
// this is a void function
return 0;
}
}
p = p->next;
}
return params;
}
static metafunc_t *
new_metafunc (void)
{
metafunc_t *metafunc;
ALLOC (1024, metafunc_t, metafuncs, metafunc);
return metafunc;
}
static metafunc_t *
get_function (const char *name, const type_t *type, specifier_t spec)
{
metafunc_t *func = Hash_Find (function_map, name);
if (func && func->meta_type == mf_generic) {
error (0, "can't mix generic and simple or overload");
return nullptr;
}
bool overload = spec.is_overload | current_language.always_override;
const char *full_name;
full_name = save_string (va (0, "%s|%s", name, encode_params (type)));
// check if the exact function signature already exists, in which case
// simply return it.
func = Hash_Find (metafuncs, full_name);
if (func) {
if (func->type != type) {
error (0, "can't overload on return types");
return func;
}
return func;
}
func = Hash_Find (function_map, name);
if (func) {
if (!overload && func->meta_type != mf_overload) {
warning (0, "creating overloaded function %s without @overload",
full_name);
warning (&(expr_t) { .loc = func->loc },
"(previous function is %s)", func->full_name);
}
overload = true;
}
func = new_metafunc ();
*func = (metafunc_t) {
.name = save_string (name),
.full_name = full_name,
.type = type,
.loc = pr.loc,
.meta_type = overload ? mf_overload : mf_simple,
};
Hash_Add (metafuncs, func);
Hash_Add (function_map, func);
return func;
}
static void
set_func_type_attrs (const type_t *func_type, attribute_t *attr_list)
{
auto func = &((type_t *) func_type)->func;//FIXME
for (auto attr = attr_list; attr; attr = attr->next) {
if (!strcmp (attr->name, "no_va_list")) {
func->no_va_list = true;
} else if (!strcmp (attr->name, "void_return")) {
func->void_return = true;
} else {
warning (0, "skipping unknown function attribute '%s'", attr->name);
}
}
}
symbol_t *
function_symbol (specifier_t spec)
{
symbol_t *sym = spec.sym;
const char *name = sym->name;
metafunc_t *func = Hash_Find (function_map, name);
auto genfunc = parse_generic_function (name, spec);
//FIXME want to be able to provide specific overloads for generic functions
//but need to figure out details, so disallow for now.
if (genfunc) {
if (func && func->meta_type != mf_generic) {
error (0, "can't mix generic and simple or overload");
return nullptr;
}
add_generic_function (genfunc);
ALLOC (1024, metafunc_t, metafuncs, func);
*func = (metafunc_t) {
.name = save_string (name),
.full_name = name,
.loc = pr.loc,
.meta_type = mf_generic,
};
Hash_Add (metafuncs, func);
Hash_Add (function_map, func);
} else {
if (!spec.sym->type || !spec.sym->type->encoding) {
spec = default_type (spec, spec.sym);
spec.sym->type = append_type (spec.sym->type, spec.type);
set_func_type_attrs (spec.sym->type, spec.attributes);
spec.sym->type = find_type (spec.sym->type);
}
func = get_function (name, unalias_type (sym->type), spec);
}
if (func && func->meta_type == mf_overload)
name = func->full_name;
symbol_t *s = symtab_lookup (current_symtab, name);
if (!s || s->table != current_symtab) {
s = new_symbol (name);
s->sy_type = sy_func;
s->type = unalias_type (sym->type);
s->params = sym->params;
s->metafunc = func;
symtab_addsymbol (current_symtab, s);
}
return s;
}
// NOTE sorts the list in /reverse/ order
static int
func_compare (const void *a, const void *b)
{
metafunc_t *fa = *(metafunc_t **) a;
metafunc_t *fb = *(metafunc_t **) b;
const type_t *ta = fa->type;
const type_t *tb = fb->type;
int na = ta->func.num_params;
int nb = tb->func.num_params;
int ret, i;
if (na < 0)
na = ~na;
if (nb < 0)
nb = ~nb;
if (na != nb)
return nb - na;
if ((ret = (tb->func.num_params - ta->func.num_params)))
return ret;
for (i = 0; i < na && i < nb; i++) {
auto diff = tb->func.param_types[i] - ta->func.param_types[i];
if (diff) {
return diff < 0 ? -1 : 1;
}
}
return 0;
}
static const expr_t *
set_func_symbol (const expr_t *fexpr, metafunc_t *f)
{
auto sym = symtab_lookup (current_symtab, f->full_name);
if (!sym) {
internal_error (fexpr, "overloaded function %s not found",
f->full_name);
}
auto nf = new_expr ();
*nf = *fexpr;
nf->symbol = sym;
return nf;
}
static const type_t * __attribute__((pure))
select_type (gentype_t *gentype, const type_t *param_type)
{
for (auto t = gentype->valid_types; t && *t; t++) {
if (*t == param_type) {
return *t;
}
if (is_reference (*t) && dereference_type (*t) == param_type) {
// pass value by reference: no promotion
return *t;
}
auto pt = param_type;
if (is_reference (pt)) {
// pass reference by value: promotion ok
pt = dereference_type (pt);
}
if (*t == pt) {
return *t;
}
if (type_promotes (*t, pt)) {
return *t;
}
}
return nullptr;
}
static bool
check_type (const type_t *type, const type_t *param_type, unsigned *cost)
{
if (!type) {
return false;
}
if (type == param_type) {
return true;
}
if (is_reference (type)) {
// pass by references is a free conversion, but no promotion
return dereference_type (type) == param_type;
}
if (is_reference (param_type)) {
// dereferencing a reference is free so long as there's no
// promotion, otherwise there's the promotion cost
param_type = dereference_type (param_type);
}
if (type == param_type) {
return true;
}
if (!type_promotes (type, param_type)) {
return false;
}
*cost += 1;
return true;
}
static const expr_t *
find_generic_function (const expr_t *fexpr, genfunc_t **genfuncs,
const type_t *call_type)
{
int num_funcs = 0;
for (auto gf = genfuncs; *gf; gf++, num_funcs++) continue;
unsigned costs[num_funcs] = {};
int num_params = call_type->func.num_params;
auto call_params = call_type->func.param_types;
for (int j = 0; j < num_funcs; j++) {
auto g = genfuncs[j];
if (g->num_params != num_params) {
continue;
}
const type_t *types[g->num_types] = {};
bool ok = true;
for (int i = 0; ok && i < num_params; i++) {
auto p = &g->params[i];
if (!p->fixed_type) {
int ind = p->gentype;
if (!types[ind]) {
types[ind] = select_type (&g->types[ind], call_params[i]);
}
ok &= check_type (types[ind], call_params[i], costs + j);
} else {
ok &= check_type (p->fixed_type, call_params[i], costs + j);
}
}
if (!ok) {
costs[j] = ~0u;
}
}
auto fsym = fexpr->symbol;
unsigned best_cost = ~0u;
int best_ind = -1;
for (int i = 0; i < num_funcs; i++) {
if (best_ind >= 0 && costs[i] == best_cost) {
return error (fexpr, "unable to disambiguate %s", fsym->name);
}
if (costs[i] < best_cost) {
best_ind = i;
best_cost = costs[i];
}
}
if (best_ind < 0) {
return error (fexpr, "unable to find generic function matching %s",
fsym->name);
}
auto g = genfuncs[best_ind];
const type_t *types[g->num_types] = {};
const type_t *param_types[num_params];
param_qual_t param_quals[num_params];
const type_t *return_type;
for (int i = 0; i < num_params; i++) {
auto p = &g->params[i];
if (!p->fixed_type) {
int ind = p->gentype;
if (!types[ind]) {
types[ind] = select_type (&g->types[ind], call_params[i]);
}
param_types[i] = types[ind];
} else {
param_types[i] = p->fixed_type;
}
param_quals[i] = p->qual;
}
if (!g->ret_type->fixed_type) {
int ind = g->ret_type->gentype;
if (!types[ind]) {
internal_error (0, "return type not determined");
}
return_type = types[ind];
} else {
return_type = g->ret_type->fixed_type;
}
param_t *params = nullptr;
for (int i = 0; i < num_params; i++) {
param_types[i] = unalias_type (param_types[i]);
params = append_params (params, new_param (nullptr, param_types[i],
g->params[i].name));
}
return_type = unalias_type (return_type);
type_t ftype = {
.type = ev_func,
.alignment = 1,
.width = 1,
.columns = 1,
.func = {
.ret_type = return_type,
.num_params = num_params,
.param_types = param_types,
.param_quals = param_quals,
},
};
auto type = find_type (&ftype);
auto name = g->name;
auto full_name = save_string (va (0, "%s|%s", name, encode_params (type)));
auto sym = symtab_lookup (fsym->table, full_name);
if (!sym || sym->table != fsym->table) {
sym = new_symbol (full_name);
sym->sy_type = sy_func;
sym->type = type;
sym->params = params;
sym->metafunc = new_metafunc ();
*sym->metafunc = *fsym->metafunc;
symtab_addsymbol (fsym->table, sym);
}
return new_symbol_expr (sym);
}
const expr_t *
find_function (const expr_t *fexpr, const expr_t *params)
{
int func_count, parm_count, reported = 0;
metafunc_t dummy, *best = 0;
void *dummy_p = &dummy;
if (fexpr->type != ex_symbol) {
return fexpr;
}
int num_params = params ? list_count (&params->list) : 0;
const type_t *arg_types[num_params + 1];
param_qual_t arg_quals[num_params + 1];
const expr_t *args[num_params + 1];
if (params) {
list_scatter_rev (&params->list, args);
}
for (int i = 0; i < num_params; i++) {
auto e = args[i];
if (e->type == ex_error) {
return e;
}
arg_types[i] = get_type (e);
arg_quals[i] = pq_in;
}
type_t call_type = {
.type = ev_func,
.alignment = 1,
.width = 1,
.columns = 1,
.func = {
.num_params = num_params,
.param_types = arg_types,
.param_quals = arg_quals,
},
};
const char *fname = fexpr->symbol->name;
auto genfuncs = (genfunc_t **) Hash_FindList (generic_functions, fname);
if (genfuncs) {
return find_generic_function (fexpr, genfuncs, &call_type);
}
auto funcs = (metafunc_t **) Hash_FindList (function_map, fname);
if (!funcs)
return fexpr;
for (func_count = 0; funcs[func_count]; func_count++) continue;
if (func_count < 2) {
if (func_count && funcs[0]->meta_type != mf_overload) {
free (funcs);
return fexpr;
}
}
call_type.func.ret_type = funcs[0]->type->func.ret_type;
dummy.type = find_type (&call_type);
qsort (funcs, func_count, sizeof (void *), func_compare);
dummy.full_name = save_string (va (0, "%s|%s", fexpr->symbol->name,
encode_params (&call_type)));
dummy_p = bsearch (&dummy_p, funcs, func_count, sizeof (void *),
func_compare);
if (dummy_p) {
auto f = (metafunc_t *) *(void **) dummy_p;
if (f->meta_type == mf_overload) {
fexpr = set_func_symbol (fexpr, f);
}
free (funcs);
return fexpr;
}
for (int i = 0; i < func_count; i++) {
auto f = (metafunc_t *) funcs[i];
parm_count = f->type->func.num_params;
if ((parm_count >= 0 && parm_count != call_type.func.num_params)
|| (parm_count < 0 && ~parm_count > call_type.func.num_params)) {
funcs[i] = 0;
continue;
}
if (parm_count < 0)
parm_count = ~parm_count;
int j;
for (j = 0; j < parm_count; j++) {
auto fptype = f->type->func.param_types[j];
auto cptype = call_type.func.param_types[j];
if (is_reference (fptype)) {
fptype = dereference_type (fptype);
}
if (is_reference (cptype)) {
cptype = dereference_type (cptype);
}
if (!type_assignable (fptype, cptype)) {
funcs[i] = 0;
break;
}
}
if (j < parm_count)
continue;
}
for (int i = 0; i < func_count; i++) {
auto f = (metafunc_t *) funcs[i];
if (f) {
if (!best) {
best = f;
} else {
if (!reported) {
reported = 1;
error (fexpr, "unable to disambiguate %s",
dummy.full_name);
error (fexpr, "possible match: %s", best->full_name);
}
error (fexpr, "possible match: %s", f->full_name);
}
}
}
if (reported)
return fexpr;
if (best) {
if (best->meta_type == mf_overload) {
fexpr = set_func_symbol (fexpr, best);
}
free (funcs);
return fexpr;
}
error (fexpr, "unable to find function matching %s", dummy.full_name);
free (funcs);
return fexpr;
}
int
value_too_large (const type_t *val_type)
{
return current_target.value_too_large (val_type);
}
static void
check_function (symbol_t *fsym)
{
param_t *params = fsym->params;
param_t *p;
int i;
auto ret_type = fsym->type->func.ret_type;
if (!ret_type || !type_size (ret_type)) {
error (0, "return type is an incomplete type");
return;
//fsym->type->t.func.type = &type_void;//FIXME better type?
}
if (value_too_large (ret_type)) {
error (0, "return value too large to be passed by value (%d)",
type_size (&type_param));
//fsym->type->func.type = &type_void;//FIXME better type?
}
for (p = params, i = 0; p; p = p->next, i++) {
if (!p->selector && !p->type && !p->name)
continue; // ellipsis marker
if (!p->type)
continue; // non-param selector
if (!type_size (p->type)) {
error (0, "parameter %d (‘%s’) has incomplete type",
i + 1, p->name);
}
if (value_too_large (p->type)) {
error (0, "param %d (‘%s’) is too large to be passed by value",
i + 1, p->name);
}
}
}
static void
build_scope (symbol_t *fsym, symtab_t *parent)
{
function_t *func = fsym->metafunc->func;
symtab_t *parameters;
symtab_t *locals;
if (!func) {
internal_error (0, "function %s not defined", fsym->name);
}
if (!is_func (func->type)) {
internal_error (0, "function type %s not a funciton", fsym->name);
}
check_function (fsym);
func->label_scope = new_symtab (0, stab_label);
parameters = new_symtab (parent, stab_param);
parameters->space = defspace_new (ds_virtual);
func->parameters = parameters;
locals = new_symtab (parameters, stab_local);
locals->space = defspace_new (ds_virtual);
func->locals = locals;
current_target.build_scope (fsym);
}
static function_t *
new_function (const char *name, const char *nice_name)
{
function_t *f;
ALLOC (1024, function_t, functions, f);
f->o_name = save_string (name);
f->s_name = ReuseString (name);
f->s_file = pr.loc.file;
if (!(f->name = nice_name))
f->name = name;
return f;
}
function_t *
make_function (symbol_t *sym, const char *nice_name, defspace_t *space,
storage_class_t storage)
{
reloc_t *relocs = 0;
if (sym->sy_type != sy_func)
internal_error (0, "%s is not a function", sym->name);
if (storage == sc_extern && sym->metafunc->func)
return sym->metafunc->func;
function_t *func = sym->metafunc->func;
if (!func) {
func = new_function (sym->name, nice_name);
func->sym = sym;
func->type = unalias_type (sym->type);
sym->metafunc->func = func;
}
if (func->def && func->def->external && storage != sc_extern) {
//FIXME this really is not the right way
relocs = func->def->relocs;
free_def (func->def);
func->def = 0;
}
if (!func->def) {
func->def = new_def (sym->name, sym->type, space, storage);
reloc_attach_relocs (relocs, &func->def->relocs);
}
return func;
}
static void
add_function (function_t *f)
{
2002-06-06 21:51:47 +00:00
*pr.func_tail = f;
pr.func_tail = &f->next;
f->function_num = pr.num_functions++;
}
function_t *
begin_function (symbol_t *sym, const char *nicename, symtab_t *parent,
int far, storage_class_t storage)
{
if (sym->sy_type != sy_func) {
error (0, "%s is not a function", sym->name);
sym = new_symbol_type (sym->name, &type_func);
sym = function_symbol ((specifier_t) {
.sym = sym,
.is_overload = true
});
}
function_t *func = sym->metafunc->func;
if (func && func->def && func->def->initialized) {
error (0, "%s redefined", sym->name);
2011-02-14 12:25:55 +00:00
sym = new_symbol_type (sym->name, sym->type);
sym = function_symbol ((specifier_t) {
.sym = sym,
.is_overload = true
});
}
defspace_t *space = far ? pr.far_data : sym->table->space;
func = make_function (sym, nicename, space, storage);
if (!func->def->external) {
func->def->initialized = 1;
func->def->constant = 1;
func->def->nosave = 1;
add_function (func);
reloc_def_func (func, func->def);
func->def->loc = pr.loc;
}
func->code = pr.code->size;
func->s_file = pr.loc.file;
if (options.code.debug) {
pr_lineno_t *lineno = new_lineno ();
func->line_info = lineno - pr.linenos;
}
build_scope (sym, parent);
return func;
}
static void
build_function (symbol_t *fsym)
{
const type_t *func_type = fsym->metafunc->func->type;
if (options.code.max_params >= 0
&& func_type->func.num_params > options.code.max_params) {
error (0, "too many params");
}
}
function_t *
build_code_function (symbol_t *fsym, const expr_t *state_expr,
expr_t *statements)
{
2011-02-01 12:18:39 +00:00
if (fsym->sy_type != sy_func) // probably in error recovery
return 0;
build_function (fsym);
if (state_expr) {
prepend_expr (statements, state_expr);
}
function_t *func = fsym->metafunc->func;
current_target.build_code (func, statements);
return fsym->metafunc->func;
}
function_t *
build_builtin_function (symbol_t *sym, const expr_t *bi_val, int far,
storage_class_t storage)
2002-05-17 18:35:54 +00:00
{
int bi;
2002-05-17 18:35:54 +00:00
if (sym->sy_type != sy_func) {
error (bi_val, "%s is not a function", sym->name);
return 0;
2002-05-17 18:35:54 +00:00
}
if (!is_int_val (bi_val)
&& !(type_default != &type_int && is_float_val (bi_val))) {
2002-05-17 18:35:54 +00:00
error (bi_val, "invalid constant for = #");
return 0;
2002-05-17 18:35:54 +00:00
}
if (sym->metafunc->meta_type == mf_generic) {
return 0;
}
function_t *func = sym->metafunc->func;
if (func && func->def && func->def->initialized) {
error (bi_val, "%s redefined", sym->name);
return 0;
}
defspace_t *space = far ? pr.far_data : sym->table->space;
func = make_function (sym, 0, space, storage);
if (func->def->external)
return 0;
2002-05-17 18:35:54 +00:00
func->def->initialized = 1;
func->def->constant = 1;
func->def->nosave = 1;
add_function (func);
2002-05-17 18:35:54 +00:00
if (is_int_val (bi_val)) {
bi = expr_int (bi_val);
} else {
bi = expr_float (bi_val);
if (bi != expr_float (bi_val)) {
error (bi_val, "invalid constant for = #");
}
}
if (bi < 0) {
error (bi_val, "builtin functions must be positive or 0");
return 0;
}
func->builtin = bi;
reloc_def_func (func, func->def);
build_function (sym);
// for debug info
build_scope (sym, current_symtab);
func->parameters->space->size = 0;
func->locals->space = func->parameters->space;
return func;
2002-05-17 18:35:54 +00:00
}
void
clear_functions (void)
{
if (metafuncs) {
Hash_FlushTable (generic_functions);
Hash_FlushTable (metafuncs);
Hash_FlushTable (function_map);
} else {
setup_type_progs ();
generic_functions = Hash_NewTable (1021, gen_func_get_key, 0, 0, 0);
metafuncs = Hash_NewTable (1021, metafunc_get_full_name, 0, 0, 0);
function_map = Hash_NewTable (1021, metafunc_get_name, 0, 0, 0);
}
}
void
add_ctor_expr (const expr_t *expr)
{
if (!pr.ctor_exprs) {
pr.ctor_exprs = new_block_expr (nullptr);
}
append_expr (pr.ctor_exprs, expr);
}
void
emit_ctor (void)
{
if (!pr.ctor_exprs) {
return;
}
auto ctor_sym = new_symbol_type (".ctor", &type_func);
ctor_sym = function_symbol ((specifier_t) { .sym = ctor_sym });
current_func = begin_function (ctor_sym, 0, current_symtab, 1, sc_static);
build_code_function (ctor_sym, 0, pr.ctor_exprs);
}