mirror of
https://git.code.sf.net/p/quake/quakeforge
synced 2024-11-30 16:10:53 +00:00
174 lines
4.4 KiB
C
174 lines
4.4 KiB
C
|
/*
|
||
|
quaternion.h
|
||
|
|
||
|
Quaternion functions
|
||
|
|
||
|
Copyright (C) 2004 Bill Currie <bill@taniwha.org>
|
||
|
|
||
|
Author: Bill Currie <bill@taniwha.org>
|
||
|
Date: 2004/4/7
|
||
|
|
||
|
This program is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU General Public License
|
||
|
as published by the Free Software Foundation; either version 2
|
||
|
of the License, or (at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
|
||
|
See the GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program; if not, write to:
|
||
|
|
||
|
Free Software Foundation, Inc.
|
||
|
59 Temple Place - Suite 330
|
||
|
Boston, MA 02111-1307, USA
|
||
|
|
||
|
*/
|
||
|
|
||
|
#ifndef __QF_math_quaternion_h
|
||
|
#define __QF_math_quaternion_h
|
||
|
|
||
|
/** \defgroup mathlib_quaternion Quaternion functions
|
||
|
\ingroup utils
|
||
|
*/
|
||
|
//@{
|
||
|
|
||
|
#include "QF/qtypes.h"
|
||
|
|
||
|
extern const vec_t *const quat_origin;
|
||
|
|
||
|
#define QDotProduct(a,b) ((a)[0] * (b)[0] + (a)[1] * (b)[1] \
|
||
|
+ (a)[2] * (b)[2] + (a)[3] * (b)[3])
|
||
|
#define QuatSubtract(a,b,c) \
|
||
|
do { \
|
||
|
(c)[0] = (a)[0] - (b)[0]; \
|
||
|
(c)[1] = (a)[1] - (b)[1]; \
|
||
|
(c)[2] = (a)[2] - (b)[2]; \
|
||
|
(c)[3] = (a)[3] - (b)[3]; \
|
||
|
} while (0)
|
||
|
#define QuatNegate(a,b) \
|
||
|
do { \
|
||
|
(b)[0] = -(a)[0]; \
|
||
|
(b)[1] = -(a)[1]; \
|
||
|
(b)[2] = -(a)[2]; \
|
||
|
(b)[3] = -(a)[3]; \
|
||
|
} while (0)
|
||
|
#define QuatConj(a,b) \
|
||
|
do { \
|
||
|
(b)[0] = (a)[0]; \
|
||
|
(b)[1] = -(a)[1]; \
|
||
|
(b)[2] = -(a)[2]; \
|
||
|
(b)[3] = -(a)[3]; \
|
||
|
} while (0)
|
||
|
#define QuatAdd(a,b,c) \
|
||
|
do { \
|
||
|
(c)[0] = (a)[0] + (b)[0]; \
|
||
|
(c)[1] = (a)[1] + (b)[1]; \
|
||
|
(c)[2] = (a)[2] + (b)[2]; \
|
||
|
(c)[3] = (a)[3] + (b)[3]; \
|
||
|
} while (0)
|
||
|
#define QuatCopy(a,b) \
|
||
|
do { \
|
||
|
(b)[0] = (a)[0]; \
|
||
|
(b)[1] = (a)[1]; \
|
||
|
(b)[2] = (a)[2]; \
|
||
|
(b)[3] = (a)[3]; \
|
||
|
} while (0)
|
||
|
#define QuatMultAdd(a,s,b,c) \
|
||
|
do { \
|
||
|
(c)[0] = (a)[0] + (s) * (b)[0]; \
|
||
|
(c)[1] = (a)[1] + (s) * (b)[1]; \
|
||
|
(c)[2] = (a)[2] + (s) * (b)[2]; \
|
||
|
(c)[3] = (a)[3] + (s) * (b)[3]; \
|
||
|
} while (0)
|
||
|
#define QuatMultSub(a,s,b,c) \
|
||
|
do { \
|
||
|
(c)[0] = (a)[0] - (s) * (b)[0]; \
|
||
|
(c)[1] = (a)[1] - (s) * (b)[1]; \
|
||
|
(c)[2] = (a)[2] - (s) * (b)[2]; \
|
||
|
(c)[3] = (a)[3] - (s) * (b)[3]; \
|
||
|
} while (0)
|
||
|
#define QuatLength(a) sqrt(QDotProduct(a, a))
|
||
|
|
||
|
#define QuatScale(a,b,c) \
|
||
|
do { \
|
||
|
(c)[0] = (a)[0] * (b); \
|
||
|
(c)[1] = (a)[1] * (b); \
|
||
|
(c)[2] = (a)[2] * (b); \
|
||
|
(c)[3] = (a)[3] * (b); \
|
||
|
} while (0)
|
||
|
|
||
|
#define QuatCompMult(a,b,c) \
|
||
|
do { \
|
||
|
(c)[0] = (a)[0] * (b)[0]; \
|
||
|
(c)[1] = (a)[1] * (b)[1]; \
|
||
|
(c)[2] = (a)[2] * (b)[2]; \
|
||
|
(c)[3] = (a)[3] * (b)[3]; \
|
||
|
} while (0)
|
||
|
#define QuatCompDiv(a,b,c) \
|
||
|
do { \
|
||
|
(c)[0] = (a)[0] / (b)[0]; \
|
||
|
(c)[1] = (a)[1] / (b)[1]; \
|
||
|
(c)[2] = (a)[2] / (b)[2]; \
|
||
|
(c)[3] = (a)[3] / (b)[3]; \
|
||
|
} while (0)
|
||
|
#define QuatCompCompare(x, op, y) \
|
||
|
(((x)[0] op (y)[0]) && ((x)[1] op (y)[1]) \
|
||
|
&& ((x)[2] op (y)[2]) && ((x)[3] op (y)[3]))
|
||
|
#define QuatCompare(x, y) QuatCompCompare (x, ==, y)
|
||
|
#define QuatCompMin(a, b, c) \
|
||
|
do { \
|
||
|
(c)[0] = min ((a)[0], (b)[0]); \
|
||
|
(c)[1] = min ((a)[1], (b)[1]); \
|
||
|
(c)[2] = min ((a)[2], (b)[2]); \
|
||
|
(c)[3] = min ((a)[3], (b)[3]); \
|
||
|
} while (0)
|
||
|
#define QuatCompMax(a, b, c) \
|
||
|
do { \
|
||
|
(c)[0] = max ((a)[0], (b)[0]); \
|
||
|
(c)[1] = max ((a)[1], (b)[1]); \
|
||
|
(c)[2] = max ((a)[2], (b)[2]); \
|
||
|
(c)[3] = max ((a)[3], (b)[3]); \
|
||
|
} while (0)
|
||
|
#define QuatCompBound(a, b, c, d) \
|
||
|
do { \
|
||
|
(d)[0] = bound ((a)[0], (b)[0], (c)[0]); \
|
||
|
(d)[1] = bound ((a)[1], (b)[1], (c)[1]); \
|
||
|
(d)[2] = bound ((a)[2], (b)[2], (c)[2]); \
|
||
|
(d)[3] = bound ((a)[3], (b)[3], (c)[3]); \
|
||
|
} while (0)
|
||
|
|
||
|
#define QuatIsZero(a) (!(a)[0] && !(a)[1] && !(a)[2] && !(a)[3])
|
||
|
#define QuatZero(a) ((a)[3] = (a)[2] = (a)[1] = (a)[0] = 0);
|
||
|
#define QuatSet(a,b,c,d,e) \
|
||
|
do { \
|
||
|
(e)[0] = a; \
|
||
|
(e)[1] = b; \
|
||
|
(e)[2] = c; \
|
||
|
(e)[3] = d; \
|
||
|
} while (0)
|
||
|
|
||
|
#define QuatBlend(q1,q2,b,q) \
|
||
|
do { \
|
||
|
(q)[0] = (q1)[0] * (1 - (b)) + (q2)[0] * (b); \
|
||
|
(q)[1] = (q1)[1] * (1 - (b)) + (q2)[1] * (b); \
|
||
|
(q)[2] = (q1)[2] * (1 - (b)) + (q2)[2] * (b); \
|
||
|
(q)[3] = (q1)[3] * (1 - (b)) + (q2)[3] * (b); \
|
||
|
} while (0)
|
||
|
|
||
|
//For printf etc
|
||
|
#define QuatExpand(q) (q)[0], (q)[1], (q)[2], (q)[3]
|
||
|
|
||
|
void QuatMult (const quat_t q1, const quat_t q2, quat_t out);
|
||
|
void QuatMultVec (const quat_t q, const vec3_t v, vec3_t out);
|
||
|
void QuatInverse (const quat_t in, quat_t out);
|
||
|
void QuatExp (const quat_t a, quat_t b);
|
||
|
void QuatToMatrix (const quat_t q, vec_t *m, int homogenous, int vertical);
|
||
|
|
||
|
//@}
|
||
|
|
||
|
#endif // __QF_math_quaternion_h
|