quakeforge-old/common/gl_rpart.c
2000-08-20 13:33:48 +00:00

1077 lines
20 KiB
C

/*
gl_rpart.c
particle engine
Copyright (C) 1996-1997 Id Software, Inc.
Copyright (C) 1999,2000 Nelson Rush.
Copyright (C) 1999,2000 contributors of the QuakeForge project
Please see the file "AUTHORS" for a list of contributors
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
$Id$
*/
#include <quakedef.h>
#include <r_local.h>
#include <glquake.h>
#include <mathlib.h>
#include <lib_replace.h>
#include <console.h>
#include <server.h>
#include <stdlib.h>
#include <cmd.h>
#define MAX_PARTICLES 2048 // max particles at once
#define ABSOLUTE_MIN_PARTICLES 512 // min particle clamp
#define MAX_FIRES 128 // rocket flames
int ramp1[8] = {0x6f, 0x6d, 0x6b, 0x69, 0x67, 0x65, 0x63, 0x61};
int ramp2[8] = {0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x68, 0x66};
int ramp3[8] = {0x6d, 0x6b, 6, 5, 4, 3};
particle_t *active_particles, *free_particles;
particle_t *particles;
int r_numparticles;
vec3_t r_pright, r_pup, r_ppn;
fire_t r_fires[MAX_FIRES];
/*
===============
R_InitParticles
===============
*/
void
R_InitParticles ( void )
{
int i;
i = COM_CheckParm ("-particles");
if (i)
{
r_numparticles = (int)(Q_atoi(com_argv[i+1]));
if (r_numparticles < ABSOLUTE_MIN_PARTICLES)
r_numparticles = ABSOLUTE_MIN_PARTICLES;
}
else
{
r_numparticles = MAX_PARTICLES;
}
particles = (particle_t *)
Hunk_AllocName (r_numparticles * sizeof(particle_t), "particles");
}
#ifdef QUAKE2
void
R_DarkFieldParticles ( entity_t *ent )
{
int i, j, k;
particle_t *p;
float vel;
vec3_t dir;
vec3_t org;
org[0] = ent->origin[0];
org[1] = ent->origin[1];
org[2] = ent->origin[2];
for (i=-16 ; i<16 ; i+=8)
for (j=-16 ; j<16 ; j+=8)
for (k=0 ; k<32 ; k+=8)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 0.2 + (rand()&7) * 0.02;
p->color = 150 + rand()%6;
p->type = pt_slowgrav;
dir[0] = j*8;
dir[1] = i*8;
dir[2] = k*8;
p->org[0] = org[0] + i + (rand()&3);
p->org[1] = org[1] + j + (rand()&3);
p->org[2] = org[2] + k + (rand()&3);
VectorNormalize (dir);
vel = 50 + (rand()&63);
VectorScale (dir, vel, p->vel);
}
}
#endif
/*
===============
R_EntityParticles
===============
*/
#define NUMVERTEXNORMALS 162
extern float r_avertexnormals[NUMVERTEXNORMALS][3];
vec3_t avelocities[NUMVERTEXNORMALS];
float beamlength = 16;
vec3_t avelocity = {23, 7, 3};
float partstep = 0.01;
float timescale = 0.01;
void
R_EntityParticles ( entity_t *ent )
{
int count;
int i;
particle_t *p;
float angle;
float sr, sp, sy, cr, cp, cy;
vec3_t forward;
float dist;
dist = 64;
count = 50;
if (!avelocities[0][0])
{
for (i=0 ; i<NUMVERTEXNORMALS*3 ; i++)
avelocities[0][i] = (rand()&255) * 0.01;
}
for (i=0 ; i<NUMVERTEXNORMALS ; i++)
{
angle = cl.time * avelocities[i][0];
sy = sin(angle);
cy = cos(angle);
angle = cl.time * avelocities[i][1];
sp = sin(angle);
cp = cos(angle);
angle = cl.time * avelocities[i][2];
sr = sin(angle);
cr = cos(angle);
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 0.01;
p->color = 0x6f;
p->type = pt_explode;
p->org[0] = ent->origin[0] + r_avertexnormals[i][0]*dist + forward[0]*beamlength;
p->org[1] = ent->origin[1] + r_avertexnormals[i][1]*dist + forward[1]*beamlength;
p->org[2] = ent->origin[2] + r_avertexnormals[i][2]*dist + forward[2]*beamlength;
}
}
/*
===============
R_ClearParticles
===============
*/
void
R_ClearParticles ( void )
{
int i;
free_particles = &particles[0];
active_particles = NULL;
for (i=0 ;i<r_numparticles ; i++)
particles[i].next = &particles[i+1];
particles[r_numparticles-1].next = NULL;
}
void
R_ReadPointFile_f ( void )
{
QFile *f;
vec3_t org;
int r;
int c;
particle_t *p;
char name[MAX_OSPATH];
char buf[256];
// FIXME snprintf(name, sizeof(name),"maps/%s.pts", sv.name);
COM_FOpenFile (name, &f);
if (!f)
{
Con_Printf ("couldn't open %s\n", name);
return;
}
Con_Printf ("Reading %s...\n", name);
c = 0;
for ( ;; )
{
if (!Qgets(f,buf,sizeof(buf)))
break;
r = sscanf (buf,"%f %f %f\n", &org[0], &org[1], &org[2]);
if (r != 3)
break;
c++;
if (!free_particles)
{
Con_Printf ("Not enough free particles\n");
break;
}
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = 99999;
p->color = (-c)&15;
p->type = pt_static;
VectorCopy (vec3_origin, p->vel);
VectorCopy (org, p->org);
}
Qclose (f);
Con_Printf ("%i points read\n", c);
}
/*
===============
R_ParseParticleEffect
Parse an effect out of the server message
===============
*/
void
R_ParseParticleEffect ( void )
{
vec3_t org, dir;
int i, count, msgcount, color;
for (i=0 ; i<3 ; i++)
org[i] = MSG_ReadCoord ();
for (i=0 ; i<3 ; i++)
dir[i] = MSG_ReadChar () * (1.0/16);
msgcount = MSG_ReadByte ();
color = MSG_ReadByte ();
if (msgcount == 255)
count = 1024;
else
count = msgcount;
R_RunParticleEffect (org, dir, color, count);
}
/*
===============
R_ParticleExplosion
===============
*/
void
R_ParticleExplosion ( vec3_t org )
{
int i, j;
particle_t *p;
for (i=0 ; i<1024 ; i++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 5;
p->color = ramp1[0];
p->ramp = rand()&3;
if (i & 1)
{
p->type = pt_explode;
for (j=0 ; j<3 ; j++)
{
p->org[j] = org[j] + ((rand()%32)-16);
p->vel[j] = (rand()%512)-256;
}
}
else
{
p->type = pt_explode2;
for (j=0 ; j<3 ; j++)
{
p->org[j] = org[j] + ((rand()%32)-16);
p->vel[j] = (rand()%512)-256;
}
}
}
}
/*
===============
R_ParticleExplosion2
===============
*/
void
R_ParticleExplosion2 ( vec3_t org, int colorStart, int colorLength )
{
int i, j;
particle_t *p;
int colorMod = 0;
for (i=0; i<512; i++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 0.3;
p->color = colorStart + (colorMod % colorLength);
colorMod++;
p->type = pt_blob;
for (j=0 ; j<3 ; j++)
{
p->org[j] = org[j] + ((rand()%32)-16);
p->vel[j] = (rand()%512)-256;
}
}
}
/*
===============
R_BlobExplosion
===============
*/
void
R_BlobExplosion ( vec3_t org )
{
int i, j;
particle_t *p;
for (i=0 ; i<1024 ; i++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 1 + (rand()&8)*0.05;
if (i & 1)
{
p->type = pt_blob;
p->color = 66 + rand()%6;
for (j=0 ; j<3 ; j++)
{
p->org[j] = org[j] + ((rand()%32)-16);
p->vel[j] = (rand()%512)-256;
}
}
else
{
p->type = pt_blob2;
p->color = 150 + rand()%6;
for (j=0 ; j<3 ; j++)
{
p->org[j] = org[j] + ((rand()%32)-16);
p->vel[j] = (rand()%512)-256;
}
}
}
}
/*
===============
R_RunParticleEffect
===============
*/
void
R_RunParticleEffect ( vec3_t org, vec3_t dir, int color, int count )
{
int i, j;
particle_t *p;
#ifdef QUAKEWORLD
int scale;
if (count > 130)
scale = 3;
else if (count > 20)
scale = 2;
else
scale = 1;
#endif
for (i=0 ; i<count ; i++) {
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
#ifdef QUAKEWORLD
p->die = cl.time + 0.1*(rand()%5);
p->color = (color&~7) + (rand()&7);
p->type = pt_grav;
for (j=0 ; j<3 ; j++) {
p->org[j] = org[j] + scale*((rand()&15)-8);
p->vel[j] = dir[j]*15;// + (rand()%300)-150;
}
#elif UQUAKE
if (count == 1024) {
// rocket explosion
p->die = cl.time + 5;
p->color = ramp1[0];
p->ramp = rand()&3;
if (i & 1) {
p->type = pt_explode;
for (j=0 ; j<3 ; j++) {
p->org[j] = org[j] + ((rand()%32)-16);
p->vel[j] = (rand()%512)-256;
}
} else {
p->type = pt_explode2;
for (j=0 ; j<3 ; j++) {
p->org[j] = org[j] + ((rand()%32)-16);
p->vel[j] = (rand()%512)-256;
}
}
} else {
p->die = cl.time + 0.1*(rand()%5);
p->color = (color&~7) + (rand()&7);
p->type = pt_slowgrav;
for (j=0 ; j<3 ; j++) {
p->org[j] = org[j] + ((rand()&15)-8);
p->vel[j] = dir[j]*15;// + (rand()%300)-150;
}
}
#endif
}
}
/*
===============
R_LavaSplash
===============
*/
void
R_LavaSplash ( vec3_t org )
{
int i, j, k;
particle_t *p;
float vel;
vec3_t dir;
for (i=-16 ; i<16 ; i++)
for (j=-16 ; j<16 ; j++)
for (k=0 ; k<1 ; k++)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 2 + (rand()&31) * 0.02;
p->color = 224 + (rand()&7);
#ifdef QUAKEWORLD
p->type = pt_grav;
#else
p->type = pt_slowgrav;
#endif
dir[0] = j*8 + (rand()&7);
dir[1] = i*8 + (rand()&7);
dir[2] = 256;
p->org[0] = org[0] + dir[0];
p->org[1] = org[1] + dir[1];
p->org[2] = org[2] + (rand()&63);
VectorNormalize (dir);
vel = 50 + (rand()&63);
VectorScale (dir, vel, p->vel);
}
}
/*
===============
R_TeleportSplash
===============
*/
void
R_TeleportSplash ( vec3_t org )
{
int i, j, k;
particle_t *p;
float vel;
vec3_t dir;
for (i=-16 ; i<16 ; i+=4)
for (j=-16 ; j<16 ; j+=4)
for (k=-24 ; k<32 ; k+=4)
{
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 0.2 + (rand()&7) * 0.02;
p->color = 7 + (rand()&7);
#ifdef QUAKEWORLD
p->type = pt_grav;
#else
p->type = pt_slowgrav;
#endif
dir[0] = j*8;
dir[1] = i*8;
dir[2] = k*8;
p->org[0] = org[0] + i + (rand()&3);
p->org[1] = org[1] + j + (rand()&3);
p->org[2] = org[2] + k + (rand()&3);
VectorNormalize (dir);
vel = 50 + (rand()&63);
VectorScale (dir, vel, p->vel);
}
}
/*
R_RocketTrail
*/
void
R_RocketTrail ( vec3_t start, vec3_t end, int type, entity_t *ent )
{
vec3_t vec;
float len;
int j;
particle_t *p;
int dec;
static int tracercount;
VectorSubtract (end, start, vec);
len = VectorNormalize (vec);
if (type < 128) {
dec = 3;
} else {
dec = 1;
type -= 128;
}
while (len > 0) {
len -= dec;
if (!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
VectorCopy (vec3_origin, p->vel);
p->die = cl.time + 2;
switch (type) {
case 0: // rocket trail
R_AddFire (start, end, ent);
p->ramp = (rand()&3);
p->color = ramp3[(int)p->ramp];
p->type = pt_fire;
for (j=0 ; j<3 ; j++)
p->org[j] = start[j] + ((rand()%6)-3);
break;
case 1: // smoke smoke
p->ramp = (rand()&3) + 2;
p->color = ramp3[(int)p->ramp];
p->type = pt_fire;
for (j=0 ; j<3 ; j++)
p->org[j] = start[j] + ((rand()%6)-3);
break;
case 2: // blood
#ifdef QUAKEWORLD
p->type = pt_slowgrav;
#else
p->type = pt_grav;
#endif
p->color = 67 + (rand()&3);
for (j=0 ; j<3 ; j++)
p->org[j] = start[j] + ((rand()%6)-3);
break;
case 3:
case 5: // tracer
p->die = cl.time + 0.5;
p->type = pt_static;
if (type == 3)
p->color = 52 + ((tracercount&4)<<1);
else
p->color = 230 + ((tracercount&4)<<1);
tracercount++;
VectorCopy (start, p->org);
if (tracercount & 1) {
p->vel[0] = 30*vec[1];
p->vel[1] = 30*-vec[0];
} else {
p->vel[0] = 30*-vec[1];
p->vel[1] = 30*vec[0];
}
break;
case 4: // slight blood
#ifdef QUAKEWORLD
p->type = pt_slowgrav;
#else
p->type = pt_grav;
#endif
p->color = 67 + (rand()&3);
for (j=0 ; j<3 ; j++)
p->org[j] = start[j] + ((rand()%6)-3);
len -= 3;
break;
case 6: // voor trail
p->color = 9*16 + 8 + (rand()&3);
p->type = pt_static;
p->die = cl.time + 0.3;
for (j=0 ; j<3 ; j++)
p->org[j] = start[j] + ((rand()&15)-8);
break;
}
VectorAdd (start, vec, start);
}
}
#ifdef UQUAKE
extern cvar_t *sv_gravity;
#endif
/*
===============
R_DrawParticles
===============
*/
void
R_DrawParticles ( void )
{
particle_t *p, *kill;
float grav;
int i;
float time2, time3;
float time1;
float dvel;
float frametime;
unsigned char *at;
unsigned char theAlpha;
vec3_t up, right;
float scale;
qboolean alphaTestEnabled;
if (gl_particles->value)
{
GL_Bind(particletexture);
alphaTestEnabled = glIsEnabled(GL_ALPHA_TEST);
if (alphaTestEnabled)
glDisable(GL_ALPHA_TEST);
glEnable (GL_BLEND);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glBegin (GL_TRIANGLES);
VectorScale (vup, 1.5, up);
VectorScale (vright, 1.5, right);
#ifdef UQUAKE
frametime = cl.time - cl.oldtime;
#else
frametime = host_frametime;
#endif
time3 = frametime * 15;
time2 = frametime * 10; // 15;
time1 = frametime * 5;
#ifdef UQUAKE
grav = frametime * sv_gravity->value * 0.05;
#else
grav = frametime * 800 * 0.05;
#endif
dvel = 4*frametime;
for ( ;; )
{
kill = active_particles;
if (kill && kill->die < cl.time)
{
active_particles = kill->next;
kill->next = free_particles;
free_particles = kill;
continue;
}
break;
}
for (p=active_particles ; p ; p=p->next)
{
for ( ;; )
{
kill = p->next;
if (kill && kill->die < cl.time)
{
p->next = kill->next;
kill->next = free_particles;
free_particles = kill;
continue;
}
break;
}
// hack a scale up to keep particles from disapearing
scale = (p->org[0] - r_origin[0])*vpn[0]
+ (p->org[1] - r_origin[1])*vpn[1]
+ (p->org[2] - r_origin[2])*vpn[2];
if (scale < 20)
scale = gl_particles->value;
else
scale = gl_particles->value + scale * 0.004;
#if 0 // was in uquake, but give it a go
glColor3ubv ((byte *)&d_8to24table[(int)p->color]);
#else
at = (byte *)&d_8to24table[(int)p->color];
if (p->type==pt_fire)
theAlpha = 255*(6-p->ramp)/6;
// theAlpha = 192;
// else if (p->type==pt_explode || p->type==pt_explode2)
// theAlpha = 255*(8-p->ramp)/8;
else
theAlpha = 255;
glColor4ub (*at, *(at+1), *(at+2), theAlpha);
// glColor3ubv (at);
// glColor3ubv ((byte *)&d_8to24table[(int)p->color]);
#endif
glTexCoord2f (0,0);
glVertex3fv (p->org);
glTexCoord2f (1,0);
glVertex3f (p->org[0] + up[0]*scale, p->org[1] + up[1]*scale, p->org[2] + up[2]*scale);
glTexCoord2f (0,1);
glVertex3f (p->org[0] + right[0]*scale, p->org[1] + right[1]*scale, p->org[2] + right[2]*scale);
p->org[0] += p->vel[0]*frametime;
p->org[1] += p->vel[1]*frametime;
p->org[2] += p->vel[2]*frametime;
switch (p->type)
{
case pt_static:
break;
case pt_fire:
p->ramp += time1;
if (p->ramp >= 6)
p->die = -1;
else
p->color = ramp3[(int)p->ramp];
p->vel[2] += grav;
break;
case pt_explode:
p->ramp += time2;
if (p->ramp >=8)
p->die = -1;
else
p->color = ramp1[(int)p->ramp];
for (i=0 ; i<3 ; i++)
p->vel[i] += p->vel[i]*dvel;
p->vel[2] -= grav;
break;
case pt_explode2:
p->ramp += time3;
if (p->ramp >=8)
p->die = -1;
else
p->color = ramp2[(int)p->ramp];
for (i=0 ; i<3 ; i++)
p->vel[i] -= p->vel[i]*frametime;
p->vel[2] -= grav;
break;
case pt_blob:
for (i=0 ; i<3 ; i++)
p->vel[i] += p->vel[i]*dvel;
p->vel[2] -= grav;
break;
case pt_blob2:
for (i=0 ; i<2 ; i++)
p->vel[i] -= p->vel[i]*dvel;
p->vel[2] -= grav;
break;
case pt_grav:
// This causes some particles to fall to the
// ground. It's been reported as a bug,
// so for now it's being fixed.
// We can implement it as a feature, but it's
// not all that cool.
// p->vel[2] -= grav * 20;
// break;
case pt_slowgrav:
p->vel[2] -= grav;
break;
}
}
glEnd ();
glDisable (GL_BLEND);
if (alphaTestEnabled)
glEnable(GL_ALPHA_TEST);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
} // if (gl_particles->value)
}
/*
R_AddFire
Nifty ball of fire GL effect. Kinda a meshing of the dlight and
particle engine code.
*/
float r_firecolor_flame[4]={0.9,0.7,0.3,1.0};
float r_firecolor_light[4]={0.9,0.7,0.3,0.66};
void
R_AddFire ( vec3_t start, vec3_t end, entity_t *ent )
{
float len;
fire_t *f;
dlight_t *dl;
vec3_t vec;
int key;
if (!gl_fires->value)
return;
VectorSubtract (end, start, vec);
len = VectorNormalize (vec);
key = ent-cl_entities+1;
if (len)
{
f = R_AllocFire (key);
VectorCopy (end, f->origin);
VectorCopy (start, f->owner);
f->size = 20;
f->die = cl.time + 0.5;
f->decay = -1;
f->color=r_firecolor_flame;
dl = CL_AllocDlight (key);
VectorCopy (end, dl->origin);
dl->radius = 200;
dl->die = cl.time + 0.5;
dl->color=r_firecolor_light;
}
}
/*
R_AllocFire
Clears out and returns a new fireball
*/
fire_t *
R_AllocFire ( int key )
{
int i;
fire_t *f;
if (key) // first try to find/reuse a keyed spot
{
f = r_fires;
for (i = 0; i < MAX_FIRES; i++, f++)
if (f->key == key)
{
memset (f, 0, sizeof(*f));
f->key = key;
f->color = f->_color;
return f;
}
}
f = r_fires; // no match, look for a free spot
for (i = 0; i < MAX_FIRES; i++, f++)
{
if (f->die < cl.time)
{
memset (f, 0, sizeof(*f));
f->key = key;
f->color = f->_color;
return f;
}
}
f = &r_fires[0];
memset (f, 0, sizeof(*f));
f->key = key;
f->color = f->_color;
return f;
}
/*
R_DrawFire
draws one fireball - probably never need to call this directly
*/
void
R_DrawFire ( fire_t *f )
{
int i, j;
vec3_t vec,vec2;
float radius;
float *b_sin, *b_cos;
b_sin = bubble_sintable;
b_cos = bubble_costable;
radius = f->size + 0.35;
// figure out if we're inside the area of effect
VectorSubtract (f->origin, r_origin, vec);
if (Length (vec) < radius)
{
AddLightBlend (1, 0.5, 0, f->size * 0.0003); // we are
return;
}
// we're not - draw it
glBegin (GL_TRIANGLE_FAN);
glColor4fv (f->color);
for (i=0 ; i<3 ; i++)
vec[i] = f->origin[i] - vpn[i] * radius;
glVertex3fv (vec);
glColor3f (0.0, 0.0, 0.0);
// don't panic, this just draws a bubble...
for (i=16 ; i>=0 ; i--)
{
for (j=0 ; j<3 ; j++) {
vec[j] = f->origin[j] + (*b_cos * vright[j]
+ vup[j]*(*b_sin)) * radius;
vec2[j] = f->owner[j] + (*b_cos * vright[j]
+ vup[j]*(*b_sin)) * radius;
}
glVertex3fv (vec);
glVertex3fv (vec2);
b_sin++;
b_cos++;
}
glEnd ();
}
/*
R_UpdateFires
Draws each fireball in sequence
*/
void
R_UpdateFires ( void )
{
int i;
fire_t *f;
if (!gl_fires->value)
return;
glDepthMask (0);
glDisable (GL_TEXTURE_2D);
glShadeModel (GL_SMOOTH);
glEnable (GL_BLEND);
glBlendFunc (GL_ONE, GL_ONE);
f = r_fires;
for (i = 0; i < MAX_FIRES; i++, f++)
{
if (f->die < cl.time || !f->size)
continue;
f->size += f->decay;
f->color[3] /= 2.0;
R_DrawFire (f);
}
glColor3f (1.0, 1.0, 1.0);
glDisable (GL_BLEND);
glEnable (GL_TEXTURE_2D);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDepthMask (1);
}
void
R_FireColor_f ( void )
{
int i;
if (Cmd_Argc() == 1) {
Con_Printf ("r_firecolor %f %f %f %f %f\n",
r_firecolor_flame[0],
r_firecolor_flame[1],
r_firecolor_flame[2],
r_firecolor_flame[3],
r_firecolor_light[3]);
return;
}
if (Cmd_Argc() !=6) {
Con_Printf ("Usage r_firecolor R G B Af Al\n");
return;
}
for (i=0; i<4; i++) {
r_firecolor_flame[i]=atof(Cmd_Argv(i+1));
r_firecolor_light[i]=r_firecolor_flame[i];
}
r_firecolor_light[3]=atof(Cmd_Argv(i+1));
}