newtree/source/gl_rsurf.c
Zephaniah E. Hull 29ef95a9b5 The end of Z_*!!
This after the Z_* stuff hit my profiling list as a top user..
2000-06-29 05:46:15 +00:00

1378 lines
29 KiB
C

/*
gl_rsurf.c
surface-related refresh code
Copyright (C) 1996-1997 Id Software, Inc.
Copyright (C) 2000 Joseph Carter <knghtbrd@debian.org>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
$Id$
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "bothdefs.h" // needed by: common.h, net.h, client.h
#include "qargs.h"
#include "bspfile.h" // needed by: glquake.h
#include "vid.h"
#include "sys.h"
#include "mathlib.h" // needed by: protocol.h, render.h, client.h,
// modelgen.h, glmodel.h
#include "wad.h"
#include "draw.h"
#include "cvar.h"
#include "net.h" // needed by: client.h
#include "protocol.h" // needed by: client.h
#include "cmd.h"
#include "sbar.h"
#include "render.h" // needed by: client.h, gl_model.h, glquake.h
#include "client.h" // need cls in this file
#include "model.h" // needed by: glquake.h
#include "console.h"
#include "glquake.h"
extern double realtime;
int skytexturenum;
#ifndef GL_RGBA4
#define GL_RGBA4 0
#endif
extern vec3_t shadecolor; // Ender (Extend) Colormod
int lightmap_bytes; // 1 or 4
int lightmap_textures;
unsigned blocklights[18*18*3];
cvar_t *gl_colorlights;
#define BLOCK_WIDTH 128
#define BLOCK_HEIGHT 128
#define MAX_LIGHTMAPS 64
int active_lightmaps;
typedef struct glRect_s {
unsigned char l,t,w,h;
} glRect_t;
glpoly_t *lightmap_polys[MAX_LIGHTMAPS];
qboolean lightmap_modified[MAX_LIGHTMAPS];
glRect_t lightmap_rectchange[MAX_LIGHTMAPS];
int allocated[MAX_LIGHTMAPS][BLOCK_WIDTH];
// the lightmap texture data needs to be kept in
// main memory so texsubimage can update properly
byte lightmaps[4*MAX_LIGHTMAPS*BLOCK_WIDTH*BLOCK_HEIGHT];
// For gl_texsort 0
msurface_t *skychain = NULL;
msurface_t *waterchain = NULL;
void R_RenderDynamicLightmaps (msurface_t *fa);
/*
R_AddDynamicLights
LordHavoc's redesigned this function completely
*/
void
R_AddDynamicLights (msurface_t *surf)
{
int lnum;
int sd, td;
float dist, maxdist, radb, brightness, red, green, blue, f;
vec3_t impact, local;
int s, t;
int i;
int smax, tmax;
mtexinfo_t *tex;
unsigned *bl;
smax = (surf->extents[0]>>4)+1;
tmax = (surf->extents[1]>>4)+1;
tex = surf->texinfo;
for (lnum=0 ; lnum<MAX_DLIGHTS ; lnum++)
{
if ( !(surf->dlightbits & (1<<lnum) ) )
continue; // not lit by this light
VectorSubtract(cl_dlights[lnum].origin, currententity->origin, local);
dist = DotProduct (local, surf->plane->normal) - surf->plane->dist;
for (i=0 ; i<3 ; i++)
impact[i] = cl_dlights[lnum].origin[i] - surf->plane->normal[i]*dist;
local[0] = DotProduct (impact, tex->vecs[0]) + tex->vecs[0][3] - surf->texturemins[0];
local[1] = DotProduct (impact, tex->vecs[1]) + tex->vecs[1][3] - surf->texturemins[1];
dist *= dist;
red = cl_dlights[lnum].color[0];
green = cl_dlights[lnum].color[1];
blue = cl_dlights[lnum].color[2];
maxdist = cl_dlights[lnum].radius*cl_dlights[lnum].radius; // for comparisons to minimum acceptable light
// if (cl_dlights[lnum].dark) // negate for darklight
// radb = cl_dlights[lnum].radius*cl_dlights[lnum].radius*-256.0*16.0; // negate and multiply by 256 for the code below
// else
radb = cl_dlights[lnum].radius*cl_dlights[lnum].radius*256.0*16.0; // multiply by 256 for the code below
bl = blocklights;
for (t = 0 ; t<tmax ; t++)
{
td = local[1] - t*16;
td = td*td + dist;
if (td < maxdist) // make sure some part of it is visible on this line
{
for (s=0 ; s<smax ; s++)
{
sd = local[0] - s*16;
if ((f = sd*sd+td) < maxdist)
{
brightness = radb / f;
*bl++ += brightness * red;
*bl++ += brightness * green;
*bl++ += brightness * blue;
}
else
bl += 3; // skip pixel
}
}
else
bl+=smax*3; // skip line
}
}
}
/*
R_BuildLightMap
Combine and scale multiple lightmaps
After talking it over with LordHavoc, I've decided to switch to using
GL_RGB for colored lights and averaging them out for plain white
lighting if needed. Much cleaner that way. --KB
*/
void
R_BuildLightMap (msurface_t *surf, byte *dest, int stride)
{
int smax, tmax;
int t;
int i, j, size;
byte *lightmap;
unsigned scale;
int maps;
float t2;
unsigned *bl;
surf->cached_dlight = (surf->dlightframe == r_framecount);
smax = (surf->extents[0]>>4)+1;
tmax = (surf->extents[1]>>4)+1;
size = smax*tmax;
lightmap = surf->samples;
// set to full bright if no light data
if (/*r_fullbright->value ||*/ !cl.worldmodel->lightdata)
{
bl = blocklights;
for (i=0 ; i<size ; i++)
{
*bl++ = 255*256;
*bl++ = 255*256;
*bl++ = 255*256;
}
goto store;
}
// clear to no light
bl = blocklights;
for (i=0 ; i<size ; i++)
{
*bl++ = 0;
*bl++ = 0;
*bl++ = 0;
}
bl = blocklights;
// add all the lightmaps
if (lightmap)
for (maps = 0;
maps < MAXLIGHTMAPS && surf->styles[maps] != 255;
maps++)
{
scale = d_lightstylevalue[surf->styles[maps]];
surf->cached_light[maps] = scale; // 8.8 fraction
bl = blocklights;
for (i=0 ; i<size ; i++)
{
*bl++ += *lightmap++ * scale;
*bl++ += *lightmap++ * scale;
*bl++ += *lightmap++ * scale;
}
}
// add all the dynamic lights
if (surf->dlightframe == r_framecount)
R_AddDynamicLights (surf);
store:
// bound and shift
if (gl_colorlights->value)
{
stride -= smax * 3;
bl = blocklights;
for (i = 0; i < tmax; i++, dest += stride)
for (j=0 ; j<smax ; j++)
{
t = (int) *bl++ >> 8;
*dest++ = bound(0, t, 255);
t = (int) *bl++ >> 8;
*dest++ = bound(0, t, 255);
t = (int) *bl++ >> 8;
*dest++ = bound(0, t, 255);
}
} else {
stride -= smax;
bl = blocklights;
for (i = 0; i < tmax; i++, dest += stride)
for (j=0 ; j<smax ; j++)
{
t = (int) *bl++ >> 8;
t2 = bound(0, t, 255);
t = (int) *bl++ >> 8;
t2 += bound(0, t, 255);
t = (int) *bl++ >> 8;
t2 += bound(0, t, 255);
t2 *= (1.0/3.0);
*dest++ = t2;
}
}
}
/*
===============
R_TextureAnimation
Returns the proper texture for a given time and base texture
===============
*/
texture_t *R_TextureAnimation (texture_t *base)
{
int reletive;
int count;
if (currententity->frame)
{
if (base->alternate_anims)
base = base->alternate_anims;
}
if (!base->anim_total)
return base;
reletive = (int)(cl.time*10) % base->anim_total;
count = 0;
while (base->anim_min > reletive || base->anim_max <= reletive)
{
base = base->anim_next;
if (!base)
Sys_Error ("R_TextureAnimation: broken cycle");
if (++count > 100)
Sys_Error ("R_TextureAnimation: infinite cycle");
}
return base;
}
/*
=============================================================
BRUSH MODELS
=============================================================
*/
extern int solidskytexture;
extern int alphaskytexture;
extern float speedscale; // for top sky and bottom sky
lpMTexFUNC qglMTexCoord2f = NULL;
lpSelTexFUNC qglSelectTexture = NULL;
qboolean mtexenabled = false;
void GL_SelectTexture (GLenum target);
void GL_DisableMultitexture(void)
{
if (mtexenabled) {
glDisable(GL_TEXTURE_2D);
GL_SelectTexture(0);
mtexenabled = false;
}
}
void GL_EnableMultitexture(void)
{
if (gl_mtexable) {
GL_SelectTexture(1);
glEnable(GL_TEXTURE_2D);
mtexenabled = true;
}
}
/*
================
R_DrawSequentialPoly
Systems that have fast state and texture changes can
just do everything as it passes with no need to sort
================
*/
void R_DrawSequentialPoly (msurface_t *s)
{
glpoly_t *p;
float *v;
int i;
texture_t *t;
glRect_t *theRect;
//
// normal lightmaped poly
//
if (!(s->flags & (SURF_DRAWSKY|SURF_DRAWTURB)))
{
R_RenderDynamicLightmaps (s);
if (gl_mtexable)
{
p = s->polys;
t = R_TextureAnimation (s->texinfo->texture);
// Binds world to texture env 0
GL_SelectTexture(0);
glBindTexture (GL_TEXTURE_2D, t->gl_texturenum);
// glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
// Binds lightmap to texenv 1
GL_EnableMultitexture(); // Same as SelectTexture (TEXTURE1)
glBindTexture (GL_TEXTURE_2D, lightmap_textures + s->lightmaptexturenum);
i = s->lightmaptexturenum;
if (lightmap_modified[i])
{
lightmap_modified[i] = false;
theRect = &lightmap_rectchange[i];
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
BLOCK_WIDTH, theRect->h, gl_lightmap_format, GL_UNSIGNED_BYTE,
lightmaps+(i* BLOCK_HEIGHT + theRect->t) *BLOCK_WIDTH*lightmap_bytes);
theRect->l = BLOCK_WIDTH;
theRect->t = BLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
}
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glBegin(GL_POLYGON);
v = p->verts[0];
for (i=0 ; i<p->numverts ; i++, v+= VERTEXSIZE)
{
qglMTexCoord2f (gl_mtex_enum + 0, v[3], v[4]);
qglMTexCoord2f (gl_mtex_enum + 1, v[5], v[6]);
glVertex3fv (v);
}
glEnd ();
return;
} else {
p = s->polys;
t = R_TextureAnimation (s->texinfo->texture);
glBindTexture (GL_TEXTURE_2D, t->gl_texturenum);
glBegin (GL_POLYGON);
v = p->verts[0];
for (i=0 ; i<p->numverts ; i++, v+= VERTEXSIZE)
{
glTexCoord2fv (&v[3]);
glVertex3fv (v);
}
glEnd ();
glBindTexture (GL_TEXTURE_2D, lightmap_textures + s->lightmaptexturenum);
glBegin (GL_POLYGON);
v = p->verts[0];
for (i=0 ; i<p->numverts ; i++, v+= VERTEXSIZE)
{
glTexCoord2fv (&v[5]);
glVertex3fv (v);
}
glEnd ();
}
return;
}
//
// subdivided water surface warp
//
if (s->flags & SURF_DRAWTURB)
{
EmitWaterPolys (s);
return;
}
}
/*
================
DrawGLPoly
================
*/
void DrawGLPoly (glpoly_t *p)
{
int i;
float *v;
glBegin (GL_POLYGON);
v = p->verts[0];
for (i=0 ; i<p->numverts ; i++, v+= VERTEXSIZE)
{
glTexCoord2fv (&v[3]);
glVertex3fv (v);
}
glEnd ();
}
/*
================
R_BlendLightmaps
================
*/
void R_BlendLightmaps (void)
{
int i, j;
glpoly_t *p;
float *v;
glRect_t *theRect;
if (!gl_texsort->value)
return;
glDepthMask (0); // don't bother writing Z
glBlendFunc (GL_ZERO, GL_SRC_COLOR);
for (i=0 ; i<MAX_LIGHTMAPS ; i++)
{
p = lightmap_polys[i];
if (!p)
continue;
glBindTexture (GL_TEXTURE_2D, lightmap_textures+i);
if (lightmap_modified[i])
{
lightmap_modified[i] = false;
theRect = &lightmap_rectchange[i];
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t,
BLOCK_WIDTH, theRect->h, gl_lightmap_format, GL_UNSIGNED_BYTE,
lightmaps+(i* BLOCK_HEIGHT + theRect->t) *BLOCK_WIDTH*lightmap_bytes);
theRect->l = BLOCK_WIDTH;
theRect->t = BLOCK_HEIGHT;
theRect->h = 0;
theRect->w = 0;
}
for ( ; p ; p=p->chain)
{
glBegin (GL_POLYGON);
v = p->verts[0];
for (j=0 ; j<p->numverts ; j++, v+= VERTEXSIZE)
{
glTexCoord2fv (&v[5]);
glVertex3fv (v);
}
glEnd ();
}
}
// Return to normal blending --KB
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDepthMask (1); // back to normal Z buffering
}
/*
================
R_RenderBrushPoly
================
*/
void R_RenderBrushPoly (msurface_t *fa)
{
texture_t *t;
byte *base;
int maps;
glRect_t *theRect;
int smax, tmax;
c_brush_polys++;
if (fa->flags & SURF_DRAWSKY)
{ // warp texture, no lightmaps
// EmitBothSkyLayers (fa);
return;
}
t = R_TextureAnimation (fa->texinfo->texture);
glBindTexture (GL_TEXTURE_2D, t->gl_texturenum);
if (fa->flags & SURF_DRAWTURB)
{ // warp texture, no lightmaps
EmitWaterPolys (fa);
return;
}
DrawGLPoly (fa->polys);
// add the poly to the proper lightmap chain
fa->polys->chain = lightmap_polys[fa->lightmaptexturenum];
lightmap_polys[fa->lightmaptexturenum] = fa->polys;
// check for lightmap modification
for (maps = 0 ; maps < MAXLIGHTMAPS && fa->styles[maps] != 255 ;
maps++)
if (d_lightstylevalue[fa->styles[maps]] != fa->cached_light[maps])
goto dynamic;
if (fa->dlightframe == r_framecount // dynamic this frame
|| fa->cached_dlight) // dynamic previously
{
dynamic:
if (r_dynamic->value)
{
lightmap_modified[fa->lightmaptexturenum] = true;
theRect = &lightmap_rectchange[fa->lightmaptexturenum];
if (fa->light_t < theRect->t) {
if (theRect->h)
theRect->h += theRect->t - fa->light_t;
theRect->t = fa->light_t;
}
if (fa->light_s < theRect->l) {
if (theRect->w)
theRect->w += theRect->l - fa->light_s;
theRect->l = fa->light_s;
}
smax = (fa->extents[0]>>4)+1;
tmax = (fa->extents[1]>>4)+1;
if ((theRect->w + theRect->l) < (fa->light_s + smax))
theRect->w = (fa->light_s-theRect->l)+smax;
if ((theRect->h + theRect->t) < (fa->light_t + tmax))
theRect->h = (fa->light_t-theRect->t)+tmax;
base = lightmaps + fa->lightmaptexturenum*lightmap_bytes*BLOCK_WIDTH*BLOCK_HEIGHT;
base += fa->light_t * BLOCK_WIDTH * lightmap_bytes + fa->light_s * lightmap_bytes;
R_BuildLightMap (fa, base, BLOCK_WIDTH*lightmap_bytes);
}
}
}
/*
================
R_RenderDynamicLightmaps
Multitexture
================
*/
void R_RenderDynamicLightmaps (msurface_t *fa)
{
byte *base;
int maps;
glRect_t *theRect;
int smax, tmax;
c_brush_polys++;
if (fa->flags & ( SURF_DRAWSKY | SURF_DRAWTURB) )
return;
fa->polys->chain = lightmap_polys[fa->lightmaptexturenum];
lightmap_polys[fa->lightmaptexturenum] = fa->polys;
// check for lightmap modification
for (maps = 0 ; maps < MAXLIGHTMAPS && fa->styles[maps] != 255 ;
maps++)
if (d_lightstylevalue[fa->styles[maps]] != fa->cached_light[maps])
goto dynamic;
if (fa->dlightframe == r_framecount // dynamic this frame
|| fa->cached_dlight) // dynamic previously
{
dynamic:
if (r_dynamic->value)
{
lightmap_modified[fa->lightmaptexturenum] = true;
theRect = &lightmap_rectchange[fa->lightmaptexturenum];
if (fa->light_t < theRect->t) {
if (theRect->h)
theRect->h += theRect->t - fa->light_t;
theRect->t = fa->light_t;
}
if (fa->light_s < theRect->l) {
if (theRect->w)
theRect->w += theRect->l - fa->light_s;
theRect->l = fa->light_s;
}
smax = (fa->extents[0]>>4)+1;
tmax = (fa->extents[1]>>4)+1;
if ((theRect->w + theRect->l) < (fa->light_s + smax))
theRect->w = (fa->light_s-theRect->l)+smax;
if ((theRect->h + theRect->t) < (fa->light_t + tmax))
theRect->h = (fa->light_t-theRect->t)+tmax;
base = lightmaps + fa->lightmaptexturenum*lightmap_bytes*BLOCK_WIDTH*BLOCK_HEIGHT;
base += fa->light_t * BLOCK_WIDTH * lightmap_bytes + fa->light_s * lightmap_bytes;
R_BuildLightMap (fa, base, BLOCK_WIDTH*lightmap_bytes);
}
}
}
/*
================
R_MirrorChain
================
*/
void R_MirrorChain (msurface_t *s)
{
if (mirror)
return;
mirror = true;
mirror_plane = s->plane;
}
/*
================
R_DrawWaterSurfaces
================
*/
void R_DrawWaterSurfaces (void)
{
int i;
msurface_t *s;
texture_t *t;
if (r_wateralpha->value == 1.0 && gl_texsort->value)
return;
//
// go back to the world matrix
//
glLoadMatrixf (r_world_matrix);
if (r_wateralpha->value < 1.0) {
glColor4f (0.5, 0.5, 0.5, r_wateralpha->value);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
} else
glColor3f (0.5, 0.5, 0.5);
if (!gl_texsort->value) {
if (!waterchain)
return;
for ( s = waterchain ; s ; s=s->texturechain) {
glBindTexture (GL_TEXTURE_2D, s->texinfo->texture->gl_texturenum);
EmitWaterPolys (s);
}
waterchain = NULL;
} else {
for (i=0 ; i<cl.worldmodel->numtextures ; i++)
{
t = cl.worldmodel->textures[i];
if (!t)
continue;
s = t->texturechain;
if (!s)
continue;
if ( !(s->flags & SURF_DRAWTURB ) )
continue;
// set modulate mode explicitly
glBindTexture (GL_TEXTURE_2D, t->gl_texturenum);
for ( ; s ; s=s->texturechain)
EmitWaterPolys (s);
t->texturechain = NULL;
}
}
if (r_wateralpha->value < 1.0)
glColor3f (0.5, 0.5, 0.5);
}
/*
================
DrawTextureChains
================
*/
void DrawTextureChains (void)
{
int i;
msurface_t *s;
texture_t *t;
if (!gl_texsort->value) {
GL_DisableMultitexture();
if (skychain)
{
skychain = NULL;
}
return;
}
for (i=0 ; i<cl.worldmodel->numtextures ; i++)
{
t = cl.worldmodel->textures[i];
if (!t)
continue;
s = t->texturechain;
if (!s)
continue;
/* if (i == skytexturenum)
R_DrawSkyChain (s);
else*/ if (i == mirrortexturenum && r_mirroralpha->value != 1.0)
{
R_MirrorChain (s);
continue;
}
else
{
if ((s->flags & SURF_DRAWTURB) && r_wateralpha->value != 1.0)
continue; // draw translucent water later
for ( ; s ; s=s->texturechain)
R_RenderBrushPoly (s);
}
t->texturechain = NULL;
}
}
/*
=================
R_DrawBrushModel
=================
*/
void R_DrawBrushModel (entity_t *e)
{
int i;
int k;
vec3_t mins, maxs;
msurface_t *psurf;
float dot;
mplane_t *pplane;
model_t *clmodel;
qboolean rotated;
currententity = e;
clmodel = e->model;
if (e->angles[0] || e->angles[1] || e->angles[2])
{
rotated = true;
for (i=0 ; i<3 ; i++)
{
mins[i] = e->origin[i] - clmodel->radius;
maxs[i] = e->origin[i] + clmodel->radius;
}
}
else
{
rotated = false;
VectorAdd (e->origin, clmodel->mins, mins);
VectorAdd (e->origin, clmodel->maxs, maxs);
}
if (R_CullBox (mins, maxs))
return;
// Ender: Extend (Alpha) [QSG - Begin]
// glEnable(GL_BLEND);
// glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
// Note: glColor4f and gl_texsort->value = 1 for alpha! :)
glColor3f (1, 1, 1);
// Ender: Extend (Alpha) [QSG - End]
memset (lightmap_polys, 0, sizeof(lightmap_polys));
VectorSubtract (r_refdef.vieworg, e->origin, modelorg);
if (rotated)
{
vec3_t temp;
vec3_t forward, right, up;
VectorCopy (modelorg, temp);
AngleVectors (e->angles, forward, right, up);
modelorg[0] = DotProduct (temp, forward);
modelorg[1] = -DotProduct (temp, right);
modelorg[2] = DotProduct (temp, up);
}
psurf = &clmodel->surfaces[clmodel->firstmodelsurface];
// calculate dynamic lighting for bmodel if it's not an
// instanced model
if (clmodel->firstmodelsurface != 0 && !gl_flashblend->value)
{
for (k=0 ; k<MAX_DLIGHTS ; k++)
{
if ((cl_dlights[k].die < cl.time) ||
(!cl_dlights[k].radius))
continue;
R_MarkLights (&cl_dlights[k], 1<<k,
clmodel->nodes + clmodel->hulls[0].firstclipnode);
}
}
glPushMatrix ();
e->angles[0] = -e->angles[0]; // stupid quake bug
R_RotateForEntity (e);
e->angles[0] = -e->angles[0]; // stupid quake bug
//
// draw texture
//
for (i=0 ; i<clmodel->nummodelsurfaces ; i++, psurf++)
{
// find which side of the node we are on
pplane = psurf->plane;
dot = DotProduct (modelorg, pplane->normal) - pplane->dist;
// draw the polygon
if (((psurf->flags & SURF_PLANEBACK) && (dot < -BACKFACE_EPSILON)) ||
(!(psurf->flags & SURF_PLANEBACK) && (dot > BACKFACE_EPSILON)))
{
if (gl_texsort->value)
R_RenderBrushPoly (psurf);
else
R_DrawSequentialPoly (psurf);
}
}
R_BlendLightmaps ();
glPopMatrix ();
}
/*
=============================================================
WORLD MODEL
=============================================================
*/
/*
================
R_RecursiveWorldNode
================
*/
void R_RecursiveWorldNode (mnode_t *node)
{
int c, side;
mplane_t *plane;
msurface_t *surf, **mark;
mleaf_t *pleaf;
double dot;
if (node->contents == CONTENTS_SOLID)
return; // solid
if (node->visframe != r_visframecount)
return;
if (R_CullBox (node->minmaxs, node->minmaxs+3))
return;
// if a leaf node, draw stuff
if (node->contents < 0)
{
pleaf = (mleaf_t *)node;
if ((c = pleaf->nummarksurfaces))
{
mark = pleaf->firstmarksurface;
do
{
(*mark)->visframe = r_framecount;
mark++;
} while (--c);
}
// deal with model fragments in this leaf
if (pleaf->efrags)
R_StoreEfrags (&pleaf->efrags);
return;
}
// node is just a decision point, so go down the apropriate sides
// find which side of the node we are on
plane = node->plane;
switch (plane->type)
{
case PLANE_X:
dot = modelorg[0] - plane->dist;
break;
case PLANE_Y:
dot = modelorg[1] - plane->dist;
break;
case PLANE_Z:
dot = modelorg[2] - plane->dist;
break;
default:
dot = DotProduct (modelorg, plane->normal) - plane->dist;
break;
}
side = dot < 0;
// recurse down the children, front side first
// LordHavoc: save a stack frame by avoiding a call
if (node->children[side]->contents != CONTENTS_SOLID && node->children[side]->visframe == r_visframecount && !R_CullBox (node->children[side]->minmaxs, node->children[side]->minmaxs+3))
R_RecursiveWorldNode (node->children[side]);
// draw stuff
if ((c = node->numsurfaces))
{
surf = cl.worldmodel->surfaces + node->firstsurface;
if (dot < -BACKFACE_EPSILON)
side = SURF_PLANEBACK;
else if (dot > BACKFACE_EPSILON)
side = 0;
for ( ; c ; c--, surf++)
{
if (surf->visframe != r_framecount)
continue;
if ((dot < 0) ^ !!(surf->flags & SURF_PLANEBACK))
continue; // wrong side
// if sorting by texture, just store it out
if (gl_texsort->value) {
if (!mirror || surf->texinfo->texture !=
cl.worldmodel->textures[mirrortexturenum]) {
surf->texturechain = surf->texinfo->texture->texturechain;
surf->texinfo->texture->texturechain = surf;
}
} else if (surf->flags & SURF_DRAWSKY) {
surf->texturechain = skychain;
skychain = surf;
} else if (surf->flags & SURF_DRAWTURB) {
surf->texturechain = waterchain;
waterchain = surf;
} else
R_DrawSequentialPoly (surf);
}
}
// recurse down the back side
// LordHavoc: save a stack frame by avoiding a call
side = !side;
if (node->children[side]->contents != CONTENTS_SOLID && node->children[side]->visframe == r_visframecount && !R_CullBox (node->children[side]->minmaxs, node->children[side]->minmaxs+3))
R_RecursiveWorldNode (node->children[side]);
}
/*
=============
R_DrawWorld
=============
*/
void R_DrawWorld (void)
{
entity_t ent;
memset (&ent, 0, sizeof(ent));
ent.model = cl.worldmodel;
VectorCopy (r_refdef.vieworg, modelorg);
currententity = &ent;
glColor3f (1.0, 1.0, 1.0);
memset (lightmap_polys, 0, sizeof(lightmap_polys));
// Be sure to clear the skybox --KB
R_DrawSky ();
R_RecursiveWorldNode (cl.worldmodel->nodes);
DrawTextureChains ();
R_BlendLightmaps ();
}
/*
===============
R_MarkLeaves
===============
*/
void R_MarkLeaves (void)
{
byte *vis;
mnode_t *node;
int i;
byte solid[4096];
if (r_oldviewleaf == r_viewleaf && !r_novis->value)
return;
if (mirror)
return;
r_visframecount++;
r_oldviewleaf = r_viewleaf;
if (r_novis->value)
{
vis = solid;
memset (solid, 0xff, (cl.worldmodel->numleafs+7)>>3);
}
else
vis = Mod_LeafPVS (r_viewleaf, cl.worldmodel);
for (i=0 ; i<cl.worldmodel->numleafs ; i++)
{
if (vis[i>>3] & (1<<(i&7)))
{
node = (mnode_t *)&cl.worldmodel->leafs[i+1];
do
{
if (node->visframe == r_visframecount)
break;
node->visframe = r_visframecount;
node = node->parent;
} while (node);
}
}
}
/*
=============================================================================
LIGHTMAP ALLOCATION
=============================================================================
*/
// returns a texture number and the position inside it
int AllocBlock (int w, int h, int *x, int *y)
{
int i, j;
int best, best2;
int texnum;
for (texnum=0 ; texnum<MAX_LIGHTMAPS ; texnum++)
{
best = BLOCK_HEIGHT;
for (i=0 ; i<BLOCK_WIDTH-w ; i++)
{
best2 = 0;
for (j=0 ; j<w ; j++)
{
if (allocated[texnum][i+j] >= best)
break;
if (allocated[texnum][i+j] > best2)
best2 = allocated[texnum][i+j];
}
if (j == w)
{
// this is a valid spot
*x = i;
*y = best = best2;
}
}
if (best + h > BLOCK_HEIGHT)
continue;
for (i=0 ; i<w ; i++)
allocated[texnum][*x + i] = best + h;
return texnum;
}
Sys_Error ("AllocBlock: full");
return 0;
}
mvertex_t *r_pcurrentvertbase;
model_t *currentmodel;
int nColinElim;
/*
================
BuildSurfaceDisplayList
================
*/
void BuildSurfaceDisplayList (msurface_t *fa)
{
int i, lindex, lnumverts;
medge_t *pedges, *r_pedge;
int vertpage;
float *vec;
float s, t;
glpoly_t *poly;
// reconstruct the polygon
pedges = currentmodel->edges;
lnumverts = fa->numedges;
vertpage = 0;
//
// draw texture
//
poly = Hunk_Alloc (sizeof(glpoly_t) + (lnumverts-4) * VERTEXSIZE*sizeof(float));
poly->next = fa->polys;
poly->flags = fa->flags;
fa->polys = poly;
poly->numverts = lnumverts;
for (i=0 ; i<lnumverts ; i++)
{
lindex = currentmodel->surfedges[fa->firstedge + i];
if (lindex > 0)
{
r_pedge = &pedges[lindex];
vec = r_pcurrentvertbase[r_pedge->v[0]].position;
}
else
{
r_pedge = &pedges[-lindex];
vec = r_pcurrentvertbase[r_pedge->v[1]].position;
}
s = DotProduct (vec, fa->texinfo->vecs[0]) + fa->texinfo->vecs[0][3];
s /= fa->texinfo->texture->width;
t = DotProduct (vec, fa->texinfo->vecs[1]) + fa->texinfo->vecs[1][3];
t /= fa->texinfo->texture->height;
VectorCopy (vec, poly->verts[i]);
poly->verts[i][3] = s;
poly->verts[i][4] = t;
//
// lightmap texture coordinates
//
s = DotProduct (vec, fa->texinfo->vecs[0]) + fa->texinfo->vecs[0][3];
s -= fa->texturemins[0];
s += fa->light_s*16;
s += 8;
s /= BLOCK_WIDTH*16; //fa->texinfo->texture->width;
t = DotProduct (vec, fa->texinfo->vecs[1]) + fa->texinfo->vecs[1][3];
t -= fa->texturemins[1];
t += fa->light_t*16;
t += 8;
t /= BLOCK_HEIGHT*16; //fa->texinfo->texture->height;
poly->verts[i][5] = s;
poly->verts[i][6] = t;
}
//
// remove co-linear points - Ed
//
if (!gl_keeptjunctions->value && !(fa->flags & SURF_UNDERWATER) )
{
for (i = 0 ; i < lnumverts ; ++i)
{
vec3_t v1, v2;
float *prev, *this, *next;
prev = poly->verts[(i + lnumverts - 1) % lnumverts];
this = poly->verts[i];
next = poly->verts[(i + 1) % lnumverts];
VectorSubtract( this, prev, v1 );
VectorNormalize( v1 );
VectorSubtract( next, prev, v2 );
VectorNormalize( v2 );
// skip co-linear points
# define COLINEAR_EPSILON 0.001
if ((fabs( v1[0] - v2[0] ) <= COLINEAR_EPSILON) &&
(fabs( v1[1] - v2[1] ) <= COLINEAR_EPSILON) &&
(fabs( v1[2] - v2[2] ) <= COLINEAR_EPSILON))
{
int j;
for (j = i + 1; j < lnumverts; ++j)
{
int k;
for (k = 0; k < VERTEXSIZE; ++k)
poly->verts[j - 1][k] = poly->verts[j][k];
}
--lnumverts;
++nColinElim;
// retry next vertex next time, which is now current vertex
--i;
}
}
}
poly->numverts = lnumverts;
}
/*
========================
GL_CreateSurfaceLightmap
========================
*/
void GL_CreateSurfaceLightmap (msurface_t *surf)
{
int smax, tmax;
byte *base;
if (surf->flags & (SURF_DRAWSKY|SURF_DRAWTURB))
return;
smax = (surf->extents[0]>>4)+1;
tmax = (surf->extents[1]>>4)+1;
surf->lightmaptexturenum = AllocBlock (smax, tmax, &surf->light_s, &surf->light_t);
base = lightmaps + surf->lightmaptexturenum*lightmap_bytes*BLOCK_WIDTH*BLOCK_HEIGHT;
base += (surf->light_t * BLOCK_WIDTH + surf->light_s) * lightmap_bytes;
R_BuildLightMap (surf, base, BLOCK_WIDTH*lightmap_bytes);
}
/*
==================
GL_BuildLightmaps
Builds the lightmap texture
with all the surfaces from all brush models
==================
*/
void GL_BuildLightmaps (void)
{
int i, j;
model_t *m;
memset (allocated, 0, sizeof(allocated));
r_framecount = 1; // no dlightcache
if (!lightmap_textures)
{
lightmap_textures = texture_extension_number;
texture_extension_number += MAX_LIGHTMAPS;
}
gl_colorlights = Cvar_Get ("gl_colorlights", "1", CVAR_ROM,
"Whether to use RGBA lightmaps or not");
if (gl_colorlights->value)
{
gl_lightmap_format = GL_RGB;
lightmap_bytes = 3;
} else {
gl_lightmap_format = GL_LUMINANCE;
lightmap_bytes = 1;
}
for (j=1 ; j<MAX_MODELS ; j++)
{
m = cl.model_precache[j];
if (!m)
break;
if (m->name[0] == '*')
continue;
r_pcurrentvertbase = m->vertexes;
currentmodel = m;
for (i=0 ; i<m->numsurfaces ; i++)
{
if ( m->surfaces[i].flags & SURF_DRAWTURB )
continue;
if ( m->surfaces[i].flags & SURF_DRAWSKY )
continue;
GL_CreateSurfaceLightmap (m->surfaces + i);
BuildSurfaceDisplayList (m->surfaces + i);
}
}
if (!gl_texsort->value)
GL_SelectTexture(1);
//
// upload all lightmaps that were filled
//
for (i=0 ; i<MAX_LIGHTMAPS ; i++)
{
if (!allocated[i][0])
break; // no more used
lightmap_modified[i] = false;
lightmap_rectchange[i].l = BLOCK_WIDTH;
lightmap_rectchange[i].t = BLOCK_HEIGHT;
lightmap_rectchange[i].w = 0;
lightmap_rectchange[i].h = 0;
glBindTexture (GL_TEXTURE_2D, lightmap_textures + i);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexImage2D (GL_TEXTURE_2D, 0, lightmap_bytes, BLOCK_WIDTH,
BLOCK_HEIGHT, 0, gl_lightmap_format,
GL_UNSIGNED_BYTE, lightmaps +
i*BLOCK_WIDTH*BLOCK_HEIGHT*lightmap_bytes);
}
if (!gl_texsort->value)
GL_SelectTexture(0);
}