newtree/source/gl_dyn_part.c

690 lines
14 KiB
C
Raw Normal View History

/*
gl_dyn_part.c
Particle system!
Copyright (C) 1996-1997 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place - Suite 330
Boston, MA 02111-1307, USA
$Id$
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "host.h"
#include "glquake.h"
#include "cmd.h"
#include "qargs.h"
#include "console.h"
#include "sys.h"
#include "r_dynamic.h"
#include <stdlib.h>
#define MAX_PARTICLES 2048 // default max # of particles at one
// time
#define ABSOLUTE_MIN_PARTICLES 512 // no fewer than this no matter what's
// on the command line
typedef enum {
pt_static, pt_grav, pt_blob, pt_blob2,
pt_smoke, pt_smokecloud, pt_bloodcloud,
pt_fadespark, pt_fadespark2, pt_fallfadespark
} ptype_t;
typedef struct particle_s
{
// driver-usable fields
vec3_t org;
int tex;
float color;
float alpha;
float scale;
// drivers never touch the following fields
struct particle_s *next;
vec3_t vel;
float ramp;
float die;
ptype_t type;
} particle_t;
static particle_t *particles, **freeparticles;
static short r_numparticles, numparticles;
extern qboolean lighthalf;
extern void GDT_Init();
extern int part_tex_smoke[8];
extern int part_tex_dot;
int ramp[8] = {0x6d, 0x6b, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01};
inline particle_t *
particle_new(ptype_t type, int texnum, vec3_t org, float scale, vec3_t vel,
float die, byte color, byte alpha)
{
particle_t *part;
if (numparticles >= r_numparticles) {
//Con_Printf("FAILED PARTICLE ALLOC!\n");
return NULL;
}
part = &particles[numparticles++];
part->type = type;
VectorCopy(org, part->org);
VectorCopy(vel, part->vel);
part->die = die;
part->color = color;
part->alpha = alpha;
part->tex = texnum;
part->scale = scale;
return part;
}
inline particle_t *
particle_new_random(ptype_t type, int texnum, vec3_t org, int org_fuzz,
float scale, int vel_fuzz, float die, byte color, byte alpha)
{
vec3_t porg, pvel;
int j;
for (j=0 ; j<3 ; j++) {
if (org_fuzz)
porg[j] = lhrandom(-org_fuzz, org_fuzz) + org[j];
if (vel_fuzz)
pvel[j] = lhrandom(-vel_fuzz, vel_fuzz);
}
return particle_new(type, texnum, porg, scale, pvel, die, color, alpha);
}
/*
===============
R_InitParticles
===============
*/
void R_InitParticles (void)
{
int i;
i = COM_CheckParm ("-particles");
if (i) {
r_numparticles = max(ABSOLUTE_MIN_PARTICLES, atoi(com_argv[i+1]));
} else {
r_numparticles = MAX_PARTICLES;
}
particles = (particle_t *)
Hunk_AllocName (r_numparticles * sizeof(particle_t), "particles");
freeparticles = (void *)
Hunk_AllocName (r_numparticles * sizeof(particle_t), "particles");
GDT_Init();
}
/*
===============
R_ClearParticles
===============
*/
void R_ClearParticles (void)
{
numparticles = 0;
}
void R_ReadPointFile_f (void)
{
QFile *f;
vec3_t org;
int r;
int c;
char name[MAX_OSPATH], *mapname, *t1;
mapname = strdup(cl.worldmodel->name);
if (!mapname)
Sys_Error("Can't duplicate mapname!");
t1 = strrchr(mapname, '.');
if (!t1)
Sys_Error("Can't find .!");
t1[0] = '\0';
snprintf (name, sizeof(name), "%s.pts", mapname);
free(mapname);
COM_FOpenFile (name, &f);
if (!f) {
Con_Printf ("couldn't open %s\n", name);
return;
}
Con_Printf ("Reading %s...\n", name);
c = 0;
for ( ;; ) {
char buf[64];
Qgets (f, buf, sizeof(buf));
r = sscanf (buf,"%f %f %f\n", &org[0], &org[1], &org[2]);
if (r != 3)
break;
c++;
if (!particle_new(pt_static, part_tex_dot, org, 2, vec3_origin, 99999,
(-c)&15, 255)) {
Con_Printf ("Not enough free particles\n");
break;
}
}
Qclose (f);
Con_Printf ("%i points read\n", c);
}
/*
===============
R_ParticleExplosion
===============
*/
void R_ParticleExplosion (vec3_t org)
{
if (!gl_particles->int_val)
return;
particle_new_random(pt_smokecloud, part_tex_smoke[rand()&7], org, 8, 30,
8, cl.time + 5, (rand()&7) + 8, 128 + (rand()&63));
}
/*
===============
R_BlobExplosion
===============
*/
void R_BlobExplosion (vec3_t org)
{
int i;
if (!gl_particles->int_val)
return;
for (i=0 ; i<512 ; i++) {
particle_new_random(pt_blob, part_tex_dot, org, 16, 2, 256,
(cl.time + 1 + (rand()&8)*0.05), (66 + rand()%6), 255);
}
for (i=0 ; i<512 ; i++) {
particle_new_random(pt_blob2, part_tex_dot, org, 16, 2, 256,
(cl.time + 1 + (rand()&8)*0.05), (150 + rand()%6), 255);
}
}
static void R_RunSparkEffect (vec3_t org, int count, int ofuzz)
{
if (!gl_particles->int_val)
return;
particle_new (pt_smokecloud, part_tex_smoke[rand()&7], org, ofuzz / 8,
vec3_origin, cl.time + 99, 12 + (rand()&3), 96);
while (count--)
particle_new_random (pt_fallfadespark, part_tex_dot, org, ofuzz, 1, 96,
cl.time + 5, ramp[rand()%6], lhrandom(0, 255));
}
static void R_RunGunshotEffect (vec3_t org, int count)
{
int scale;
if (!gl_particles->int_val)
return;
if (count > 6)
scale = 3;
else
scale = 2;
R_RunSparkEffect(org, count * 10, 8 * scale);
return;
}
static void R_BloodPuff (vec3_t org, int count)
{
if (!gl_particles->int_val)
return;
particle_new(pt_bloodcloud, part_tex_smoke[rand()&7], org, 12, vec3_origin,
cl.time + 99, 68+(rand()&3), 128);
}
/*
===============
R_RunPuffEffect
===============
*/
void R_RunPuffEffect (vec3_t org, byte type, byte count)
{
if (!gl_particles->int_val)
return;
switch (type) {
case TE_GUNSHOT:
R_RunGunshotEffect (org, count);
break;
case TE_BLOOD:
R_BloodPuff (org, count);
break;
case TE_LIGHTNINGBLOOD:
R_BloodPuff (org, 5+(rand()&1));
break;
}
}
/*
===============
R_RunParticleEffect
===============
*/
void R_RunParticleEffect (vec3_t org, int color, int count)
{
int i, j, scale;
vec3_t porg;
if (!gl_particles->int_val)
return;
if (count > 130)
scale = 3;
else if (count > 20)
scale = 2;
else
scale = 1;
for (i=0 ; i<count ; i++)
{
for (j=0 ; j<3 ; j++)
{
porg[j] = org[j] + scale*((rand()&15)-8);
}
particle_new(pt_grav, part_tex_dot, porg, 2, vec3_origin,
(cl.time + 0.1*(rand()%5)), (color&~7) + (rand()&7), 255);
}
}
void R_RunSpikeEffect (vec3_t org, byte type)
{
switch (type) {
case TE_SPIKE:
R_RunSparkEffect(org, 5, 8);
break;
case TE_SUPERSPIKE:
R_RunSparkEffect(org, 10, 8);
break;
case TE_KNIGHTSPIKE:
R_RunSparkEffect(org, 10, 8);
break;
case TE_WIZSPIKE:
R_RunSparkEffect(org, 15, 16);
break;
}
}
/*
===============
R_LavaSplash
===============
*/
void R_LavaSplash (vec3_t org)
{
int i, j;
float vel;
vec3_t dir, porg, pvel;
if (!gl_particles->int_val)
return;
for (i=-16 ; i<16 ; i++) {
for (j=-16 ; j<16 ; j++) {
dir[0] = j*8 + (rand()&7);
dir[1] = i*8 + (rand()&7);
dir[2] = 256;
porg[0] = org[0] + dir[0];
porg[1] = org[1] + dir[1];
porg[2] = org[2] + (rand()&63);
VectorNormalize (dir);
vel = 50 + (rand()&63);
VectorScale (dir, vel, pvel);
particle_new(pt_grav, part_tex_dot, porg, 2, pvel,
(cl.time + 2 + (rand()&31) * 0.02), (224 + (rand()&7)), 255);
}
}
}
/*
===============
R_TeleportSplash
===============
*/
void R_TeleportSplash (vec3_t org)
{
int i, j, k;
float vel;
vec3_t dir, porg, pvel;
if (!gl_particles->int_val)
return;
for (i=-16 ; i<16 ; i+=4)
for (j=-16 ; j<16 ; j+=4)
for (k=-24 ; k<32 ; k+=4)
{
dir[0] = j*8;
dir[1] = i*8;
dir[2] = k*8;
porg[0] = org[0] + i + (rand()&3);
porg[1] = org[1] + j + (rand()&3);
porg[2] = org[2] + k + (rand()&3);
VectorNormalize (dir);
vel = 50 + (rand()&63);
VectorScale (dir, vel, pvel);
particle_new(pt_grav, part_tex_dot, porg, 2, pvel,
(cl.time + 0.2 + (rand()&7) * 0.02),
(7 + (rand()&7)), 255);
}
}
void R_RocketTrail (vec3_t start, vec3_t end, int type, entity_t *ent)
{
vec3_t vec;
float len;
int j, ptex;
ptype_t ptype;
vec3_t porg, pvel;
float pdie, pscale;
byte palpha, pcolor;
if (type == 0)
R_AddFire (start, end, ent);
if (!gl_particles->int_val)
return;
VectorSubtract (end, start, vec);
len = VectorNormalize (vec);
while (len > 0)
{
VectorCopy (vec3_origin, pvel);
pdie = cl.time + 2;
ptype = pt_static;
ptex = part_tex_dot;
pcolor = 0;
pscale = 1;
palpha = 255;
switch (type) {
case 0: // rocket trail
pcolor = (rand()&3)+12;
goto common_rocket_gren_trail;
case 1: // grenade trail
pcolor = (rand()&3)+3;
goto common_rocket_gren_trail;
common_rocket_gren_trail:
len -= 4;
ptex = part_tex_smoke[rand()&7];
pscale = lhrandom(8, 12);
palpha = 48 + (rand()&31);
ptype = pt_smoke;
pdie = cl.time + 1;
VectorCopy(start, porg);
break;
case 2: // blood
case 4: // slight blood
len -= 5;
ptex = part_tex_dot;
pscale = 1;
pcolor = 68 + (rand()&3);
pdie = cl.time + 2;
for (j=0 ; j<3 ; j++) {
pvel[j] = (rand()&15)-8;
porg[j] = start[j] + ((rand()%3)-2);
}
ptype = pt_grav;
palpha = 255;
break;
case 6: // voor trail
len -= 3;
pcolor = 9*16 + 8 + (rand()&3);
ptype = pt_static;
pscale = lhrandom(1, 2);
pdie = cl.time + 0.3;
for (j=0 ; j<3 ; j++)
porg[j] = start[j] + ((rand()&15)-8);
break;
case 3:
case 5: // tracer
{
static int tracercount;
len -= 3;
pdie = cl.time + 0.5;
ptype = pt_static;
pscale = lhrandom(2, 4);
if (type == 3)
pcolor = 52 + ((tracercount&4)<<1);
else
pcolor = 230 + ((tracercount&4)<<1);
tracercount++;
VectorCopy (start, porg);
if (tracercount & 1)
{
pvel[0] = 30*vec[1];
pvel[1] = 30*-vec[0];
}
else
{
pvel[0] = 30*-vec[1];
pvel[1] = 30*vec[0];
}
break;
}
}
VectorAdd (start, vec, start);
particle_new(ptype, ptex, porg, pscale, pvel, pdie, pcolor, palpha);
}
}
/*
===============
R_DrawParticles
===============
*/
void R_DrawParticles (void)
{
byte i;
float grav, fast_grav, dvel;
float minparticledist;
unsigned char *at;
byte alpha;
vec3_t up, right;
float scale, scale2;
particle_t *part;
int activeparticles, maxparticle, j, k;
// LordHavoc: particles should not affect zbuffer
glDepthMask(GL_FALSE);
VectorScale (vup, 1.5, up);
VectorScale (vright, 1.5, right);
grav = (fast_grav = host_frametime * 800) * 0.05;
dvel = 4*host_frametime;
minparticledist = DotProduct(r_refdef.vieworg, vpn) + 32.0f;
activeparticles = 0;
maxparticle = -1;
j = 0;
for (k = 0, part = particles; k < numparticles; k++, part++) {
if (part->die <= cl.time) {
freeparticles[j++] = part;
continue;
}
maxparticle = k;
activeparticles++;
// Don't render particles too close to us.
// Note, we must still do physics and such on them.
if (!(DotProduct(part->org, vpn) < minparticledist)) {
at = (byte *)&d_8to24table[(byte)part->color];
alpha = part->alpha;
if (lighthalf)
glColor4ub((byte) ((int) at[0] >> 1), (byte) ((int) at[1] >> 1), (byte) ((int) at[2] >> 1), alpha);
else
glColor4ub(at[0], at[1], at[2], alpha);
scale = part->scale * 0.75;
scale2 = part->scale * -0.75;
glBindTexture(GL_TEXTURE_2D, part->tex);
glBegin (GL_QUADS);
glTexCoord2f(0,1);
glVertex3f((part->org[0] + up[0]*scale + right[0]*scale),
(part->org[1] + up[1]*scale + right[1]*scale),
(part->org[2] + up[2]*scale + right[2]*scale));
glTexCoord2f(0,0);
glVertex3f((part->org[0] + up[0]*scale2 + right[0]*scale),
(part->org[1] + up[1]*scale2 + right[1]*scale),
(part->org[2] + up[2]*scale2 + right[2]*scale));
glTexCoord2f(1,0);
glVertex3f((part->org[0] + up[0]*scale2 + right[0]*scale2),
(part->org[1] + up[1]*scale2 + right[1]*scale2),
(part->org[2] + up[2]*scale2 + right[2]*scale2));
glTexCoord2f(1,1);
glVertex3f((part->org[0] + up[0]*scale + right[0]*scale2),
(part->org[1] + up[1]*scale + right[1]*scale2),
(part->org[2] + up[2]*scale + right[2]*scale2));
glEnd();
}
for (i=0 ; i<3 ; i++)
part->org[i] += part->vel[i]*host_frametime;
#define alpha_die(p) if (p->alpha < 1) part->die = -1;
switch (part->type)
{
case pt_static:
break;
case pt_blob:
for (i=0 ; i<3 ; i++)
part->vel[i] += part->vel[i]*dvel;
part->vel[2] -= grav;
break;
case pt_blob2:
for (i=0 ; i<2 ; i++)
part->vel[i] -= part->vel[i]*dvel;
part->vel[2] -= grav;
break;
case pt_grav:
part->vel[2] -= grav;
break;
case pt_smoke:
part->scale += host_frametime * 6;
part->alpha -= host_frametime * 128;
alpha_die(part);
break;
case pt_smokecloud:
part->scale += host_frametime * 60;
part->alpha -= host_frametime * 128;
alpha_die(part);
break;
case pt_bloodcloud:
/*
if (Mod_PointInLeaf(part->org, cl.worldmodel)->contents != CONTENTS_EMPTY) {
part->die = -1;
break;
}
*/
part->scale += host_frametime * 4;
part->alpha -= host_frametime * 64;
part->vel[2] -= grav;
alpha_die(part);
break;
case pt_fadespark:
part->alpha -= host_frametime * 256;
part->vel[2] -= grav;
if (part->alpha < 1)
part->die = -1;
break;
case pt_fadespark2:
part->alpha -= host_frametime * 512;
part->vel[2] -= grav;
alpha_die(part);
break;
case pt_fallfadespark:
part->alpha -= host_frametime * 256;
part->vel[2] -= fast_grav;
if (part->alpha < 1)
part->die = -1;
break;
}
}
k = 0;
while (maxparticle >= activeparticles) {
*freeparticles[k++] = particles[maxparticle--];
while (maxparticle >= activeparticles && particles[maxparticle].die < cl.time)
maxparticle--;
}
numparticles = activeparticles;
glColor3ubv(lighthalf_v);
glDepthMask(GL_TRUE);
}